

Direct neutrino mass measurements

Europhysics on Neutrino Masses and Mixings, Les Houches, June 18-22, 2001

Christian Weinheimer

Institute of Physics, Johannes Gutenberg-University, D-55099 Mainz, Germany

Email: christian.weinheimer@uni-mainz.de

- Introduction
- Search for neutrino masses: oscillations

 $0\nu\beta\beta$

kinematic mass measurements

- The Mainz and Troitsk Neutrino Mass Experiments
- Future approaches
- KATRIN: A future large tritium β experiment with sub-eV sensitivity
- Conclusion

Some of the transperencies could not have been shown in the oral presentation due to time reasons

 \Rightarrow no determination of absolute neutrino mass scale

Neutrino masses & particle physics

Neutrino masses & astrophysics

Current knowledge of energy and mass distribution in the universe ($\Omega = 1$, flat) \rightarrow Big Bang theory: relic neutrinos: $N_{\nu} \approx 10^9 N_B$ Structure formation: $\rho_{\nu} < 0.15 \rho_c$

 $\bullet \ \Rightarrow 1/3 \sum_{\rm i} m(\nu_{\rm i}) < 2 \ eV/c^2 \quad \mbox{(for stable ν)}$

Neutrino mass (and mixing) concern:

- relic neutrinos, dark matter and evolution of the universe
- anisotropies of cosmic microwave background
- structure formation
- supernovae & r-process, ...

 \Rightarrow eV neutrino masses are very important

Search for neutrino masses

Search for effects, which can only exist, if $m(\nu) \neq 0$ (and if other requirements are fulfilled)

- neutrino oscillations (ν mixing, different masses)
- neutrinoless double β decay ($0\nu\beta\beta$) (Majorana neutrinos)

B) Direct mass determinations:

No further requirements, except neutral, spin 1/2 use $E^2 = p^2 + m^2 \Rightarrow m^2(\nu)$ is observable mostly

time-of-flight measurements
 very long distances ⇒ very bright astrophysical sources only
 *ν*s from Supernova 1987a (large Magellan cloud, *L* = 50 kpc)
 t=0 unknown ⇒ use energy time-of-arrival correlation:

$$t(E) = \frac{L}{c} \cdot \left(1 + \frac{m^2(\nu)c^4}{2E^2}\right)$$

 $\Rightarrow m(
u_e) \leq 23 \; eV$ (PDG 2000)

• kinematics of weak decays Energy and momentum conservation, measure charged decay products $m(\nu_{\tau}) < 18.2 \text{ MeV/c}^2, m(\nu_{\mu}) < 190 \text{ keV/c}^2$ (95% C.L.)

20.6.2001 Direct measurement of $m(\nu_e)$ Tritium β decay: superallowed $^{3}\text{H} \longrightarrow ^{3}\text{He}^{+} + \text{e}^{-} + \bar{\nu}_{\text{e}}$: E₀ = 18.6 keV $t_{1/2}$: 12.3 a 1.2 ,1000 deviations from parabola due to scattering, resolution effects, 800 [a.r.] 8.0 [a.r.] electronic final states, ... count rate [a.u.] 600 const. offset ~ $m^2(v_{e})$ 9.0 count rate $=\Sigma_i |U_{ei}|^2 m_i^2$ 400 $m_v c^2 = 0 eV$ $\sim 2*10^{-10}$ 200 0.2 $m_v c^2 = 10 eV$ 0 0 ₽<u></u>2-0--20 15 -30-1010 10 \bigcirc 5 \bigcirc energy E [keV] $E-E_0$ [eV] Ch.Weinheimer

Present status and questions

Situation in the field:

- Evidence for neutrino oscillations is very serious
- Probably very small squared mass differences $\Delta m^2 \leq 5 \cdot 10^{-3} \; eV^2$
- Probably very large mixing $\sin^2(2\Theta) \approx 1$ (at least partially)
- Oscillation experiments: \Rightarrow no absolute neutrino mass scale
- Current tritium experiments: sensitivity limit of 2 eV

Possible scenarios

• Hierachical neutrino mass scenario:

 Δm^2 small ightarrow all neutrino masses are small

 \Rightarrow no significant contribution to dark matter seesaw mechanism, but naturally no large mixing

• Degenerate neutrino mass scenario:

 $\Rightarrow m(\nu_1) \approx m(\nu_2) \approx m(\nu_3) \approx m(\nu)$

Interesting mass range: < 2 eV:

 \Rightarrow significant contribution to dark matter possible

Urgent questions

- Expect much better data from planned oscillation experiments
 ⇒ absolute neutrino mass scale?
- Which is the right theory beyond the Standard Model?
 - \Rightarrow degenerated and hierarchical neutrino masses?
- Expect very stringent CMBR data from Planck/Map

 \Rightarrow neutrinos relevant for dark matter and CMBR anisotropies?

 \Rightarrow need sub eV sensitivity on neutrino mass

Wait f	for next galactic supernova:
	eV sensitivity for $m(y_{i})$ and $m(y_{i})$
	> 1 eV sensitivity for $m(\nu_{\mu})$ and $m(\nu_{\tau})$
U	\geq 1 cV sensitivity for $m(\nu_e)$, limited by supernova time structure
\ominus	1-3 supernovae per century in our galaxy
Searc	The capeline contains in our galaxy $r_{\rm c}$
	Next generation experiments very sensitive: $< 0.1 \text{ eV}$
A A	Only sensitive to Majorana-type neutrinos
Θ	Cancelations possible: $m_{ee} = \sum U_{ei}^2 m(\nu_i) $
Other	β decays and cryogenic bolometers:
\oplus	Exciting new detector technology
\oplus	In principle scalable
\ominus	Microbolometers (187 Re) are still under development.
	ightarrow expected sensitivity for near future: $pprox$ 10 eV
Tritiu	m β decay:
\oplus	First MAC-E filters work successfully at Mainz and Troitsk
\oplus	Improvement by upscaling expected
\ominus	Would like to have non-integrating mode
	also with large luminosity and high energy resolution due
	Troitsk anomaly, tachyons, right-handed currents,
\oplus	ightarrow time-of-flight modus (MAC-E-TOF)
	\Rightarrow would like a have a
	next-generation $etaeta 0 u$ experiment
	AND a
	next-dependent on tritium β experiment

Future $0\nu\beta\beta$ experiments

Common features:

- detector mass: $\mathcal{O}(1)$ t
- sensitivity on m_{ee} : < 0.1 eV
- ultralow background required

Proposed experiments:

• Cuore

 130 Te as TeO $_2$ crystals, cryogenic bolometer,

Cuoricino will start in summer 2001

• Exo

 136 Xe in TPC, Ba⁺ daughter tagged by resonant laser

Genius

enriched 76 Ge, shielded by LN₂ tank, test facility approved

Majorana

enriched ⁷⁶Ge, transition to excited states

• Moon

(enriched) $^{100}\mathrm{Mo}$ foils between spatial resolving scintillators

KATRIN: A new Large Tritium β Experiment

Physics aim: sensitivity on ${ m m}_{ u} < 1\,{ m eV}$

- Absolute neutrino mass scale / electron neutrino mass
- Degenerated and hierarchical neutrino masses?
- Neutrino masses relevant for dark matter or CMBR?

Tritium β decay: presently the only way to probe directly sub-eV ν -masses!

- → Proposal for a large spectrometer, 7 m in diameter
 based on the MAC-E principle (Mainz, Troitsk)
 to be built at Forschungszentrum Karlsruhe/Germany
- Currently groups from Karlsruhe, Mainz, Troitsk and Fulda are working on design studies

Actual design study

Analysing plane of spectrometer: as large as possible,

since $A_{analyze}$ naivly scales with $1/m_{\nu}^4$:

- Improvement in $m(\nu)$
 - \Rightarrow needs improvement in

$$1/\Delta E \propto A_{analyze} \propto d_{analyze}^{1/2}$$

- Improvement in $m(\nu)$
 - \Rightarrow needs improvement in luminosity $\mathcal{L}^3 \propto A^3_{analyse} \propto d^{3/2}_{analyse}$

but additional gain factors:

- Systematic uncertainties
- Source column density
- measurement time
- measurement point distribution

. . .

Systematic uncertainties

The smaller the neutrino mass, the smaller the region of interest below the β endpoint

- \Rightarrow Excited electronic final states ($\Delta E_{exc} \geq 27eV$) do not play a role !
- ⇒ Inelastic scattering in the T₂ source ($\Delta E_{sca} \ge 13 eV$) is not big ! is relevant since MAC-E-filter response function has no tails!
- \Rightarrow one well-defined final state similar to cryogenic detectors

Systematic uncertainties

• Rotation-vibration excitation of final ground state

- Inelastic scattering (sys. uncert.: Troitsk: \approx 3 %, Mainz: \approx 6 %)
- Solid state effects (for quench-condensed source only)
- Stability of settings (HV, source activity, source purity, ...)

Simulation of the sensitivity on m_{ν}

First simulation with conservative assumptions:

20.6.2001

Status of KArlsruhe TRItium Neutrino experiment

Working group active since more than one year

- Forschungszentrum Karlsruhe/Germany
 IK: H. Blümer, G. Drexlin, K. Eitel, ...
 TLK: R.D. Penzhorn, M. Glugla, R. Lässer
- Mainz University/Germany
 - E. Otten, J. Bonn, Ch. Weinheimer, ...
- INR Troitsk/Russia
 - V. Lobashev, O. Kazachenko, N. Titov, ...
- Fachhochschule Fulda/Germany
 - A. Osipowicz

Neutrino Masses in the sub-eV Range

International workshop on future direct measurements of the electron neutrino mass and their implications

Bad Liebenzell / Schwarzwald , Germany, January 18 - 21, 2001

http://www-ik1.fzk.de/tritium/liebenzell/ paper: http://www-ik1.fzk.de/tritium/

New collaborators:

- UW Seattle: H. Robertson, J. Wilkerson, ...
- Academy of Sciences, Rez near Prague: A. Kovalik, O. Dragoun, ...
- **2001** Forming of collaboration
 - Publication of letter of intent, proposal
 - Dedicated change of Mainz setup for background investigations
- **2002** Start of build-up phase, ...

Summary

Neutrino masses

- Atmospheric and solar neutrino experiments \Rightarrow neutrino oscillations $\Rightarrow m(\nu) \neq 0$
- Particle physics: neutrino mass scale, degenerated or hierarchical neutrino masses
- Cosmology: dark matter, structure formation, influence on CMBR, ...

Direct neutrino mass experiments

– Upper limits: $m(
u_{ au}) < 18.2$ MeV, $m(
u_{\mu}) < 190$ keV, $m(
u_{e}) < 2.2~(2.5)$ eV $\,$ (95 % C.L.)

- Electron neutrino mass: \Rightarrow precision measurement of the tritium β spectrum Bolometer (¹⁸⁷Re) fascinating, multi-purpose, but still behind

- Successful development of MAC-E-Filter principle (Mainz, Troitsk)
- Mainz: systematics of T₂ films (roughening transition, inel. scattering, self-charging)
- KATRIN: A large tritium β experiment

(FZ Karlsruhe, Mainz, Troitsk, ...)

- currently only direct neutrino mass determination with sub-eV sensitivity (\leq 0.4 eV)
 - \Rightarrow key experiment for the mass of the neutrino
- based on MAC-E-Filter (+ MAC-E-TOF Mode)
- new collaborators: UW Seattle, Academy of Sciences Rez/Prague
- International Workshop: January 18. 21. at Bad Liebenzell/Germany was very successful