Combining LSND and

Atmospheric Anomalies

Solveig Skadhauge Lund University, Sweden

Les Houches, 20 June 2001

G. Barenboim , A. Dighe and S.S. hep-ph/0106002

Study ways to obtain an excess of electron events for atmospheric neutrinos in a three neutrino analysis.

- Fit with additional SOLAR mass square difference.
- Fit with additional LSND mass square difference.

Study three-active-neutrino oscillation

 \Rightarrow Only two anomalies can be solved.

Atmospheric neutrinos: dominant $\nu_{\mu} \rightarrow \nu_{\tau}$ osc.

Conventional Scheme: ATM. + SOLAR

LSND Scheme: ATM. + LSND

For atmospheric neutrinos: Can we see any difference between the two schemes when studying the **small corrections** to two-neutrino $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation?

Long baseline experiments: K2K, MINOS, CNGS - is it possible to differentiate between the schemes?

Exotic solar solutions

- Sterile neutrino oscillation (SMA).
 '2+2' four-neutrino scheme.
- FCNC, e.g. ν_e + quark $\rightarrow \nu_{\alpha}$ + quark.
- Violation of equivalence principle.
- Large extra dimensions (sterile).
- Magnetic moment (requires $\Delta m^2 \simeq 10^{-8} \text{eV}^2$)
- Neutrino decay (bad fit).

Exotic LSND solutions

- (some amount of) sterile neutrino osc.
 '3+1' four-neutrino scheme (very bad fit).
- Lepton number violating muon decay. Almost ruled out in a model-independent way.

If the LSND anomaly is real it most likely should be solved by mainly active neutrino oscillation

Motivation from atm. electron ratios

Both LSND and Solar Anomalies concerns ν_e

The electron neutrino ratios R_e test the $\nu_e \rightarrow \nu_\mu$ oscillation

 $R_e = P_{ee} + r P_{e\mu}$

 $r\simeq 2$ in sub-GeV range and $r\simeq 3$ in Multi-GeV range.

Data indicates an excess of electron events for atmospheric neutrinos.

Need to consider a three neutrino analysis.

Additonal $\Delta m^2 < \Delta m^2_{\rm atm}$ (SOLAR).

Additional $\Delta m^2 > \Delta m^2_{\text{atm}}$ (LSND).

For atmospheric neutrinos we fit to Sub-GeV and Multi-GeV data only.

Stopping and through going ν_{μ} data sets are not expected to affect the comparision much.

Fit to the ratio of the measured number of events to the number of events expected from no-oscillation.

$$R = \frac{N^{\exp}}{N^0}$$

The atmospheric neutrino flux calculation does have large error, but mainly in the overall nor-malization.

For both schemes we use 4 fitting parameters.

Conventional: solar angle is fixed near best fit to LMA

LSND: Choose Δm^2_{LSND} to fit LSND.

Only for large Δm_{\odot}^2 (LMA) and large sin²(2 $\theta_{\rm LSND}$) do we get sizeable difference from the two neutrino osc.

Atmospheric and CHOOZ

Allowed region in $\Delta m^2_{\rm atm}$ and $\sin^2(2\theta_{\rm atm})$

Best fit points (55 data) LSND scheme: $sin^2(2\theta_{LSND}) = 0.08$

 $\chi^2_{\rm min} = 44.9$

Conventional scheme: $\Delta m_{\odot}^2 = 2 \times 10^{-4} \text{ eV}^2$

$$\chi^2_{\rm min} = 45.3$$

The atmospheric data prefers large solar mass squared difference: $\chi^2_{\rm min} = 49.1$ for $\Delta m^2_{\odot} = 2 \times 10^{-5}$ eV².

Combining solar, atmospheric and CHOOZ

 $\chi^2 / dof = 0.93$

Best fit at $\Delta m_{\odot}^2 = 8 \times 10^{-5} \text{ eV}^2$.

Gonzalez-Garcia *et. al.*: $\chi^2/dof = 0.97$ (Taking $\Delta m_{\odot}^2 = 0$ for atm. analysis) [Gonzalez-Garcia *et. al.*, hep-ph/0009350]

Combining LSND, atmospheric and CHOOZ

 $\chi^2 / dof = 0.88$

Best fit at $\sin^2(2\theta_{\text{LSND}}) = 0.08$

Including Bugey: $\chi^2/dof = 0.87$ Best fit sin²(2 θ_{LSND}) = 0.06

Electron excess

For the conventional scheme (solar+atm.) we have two important parameters.

 $s_{13} \neq 0$

- Large excess for up-going Multi-GeV only.
- Proportional to $(rs_{23}^2 1)$.
- Excess on **dark** and deficit on **light** side.

[Akhmedov et. al., hep-ph/9808270]

 $\Delta m_{\odot}^2 \neq 0$

- Large excess for Sub-GeV only.
- Proportional to $(rc_{23}^2 1)$.
- Excess on light and deficit on dark side.

[Peres,Smirnov, hep-ph/9902312]

Cannot produce excess in both Sub- and Multi-GeV.

Ratios for Multi-GeV down-going ν 's are 1.

Electron excess

For the LSND scheme in the favored region $(\sin^2(2\theta_{LSND}) > 0.02)$

- Excess for both Multi-GeV and Sub-GeV.
- The Multi-GeV excess is slightly larger.
- Largest excess for down-going Multi-GeV.
- Up/down asymmetry is negative.

"Predictions where the effect is large"

For smaller value of the LSND angle the picture can be different.

$$\xi_e \approx 2s_{13}^2 c_{13}^2 (rs_{23}^2 - 1)$$

+2rc_{13}^2 s_{12} c_{12} \sin(2\theta_{\text{atm}}) \sin^2\left(\frac{\Delta m_{\text{atm}}^2 L}{4E}\right)

Allowed region for the conventional scheme constraining Δm_{\odot}^2 .

For large Δm_{\odot}^2 nearly all the dark side is disallowed.

For small Δm_{\odot}^2 the dark side allows large values of s_{13} .

Long baseline experiments

The capability of differentiating between the two schemes, depends on the value of L/E. If the atmospheric Δm^2 dominates the oscillation you cannot see the difference

• K2K will not be able to see difference, unless the LSND angle is very large.

 $\sin^2(\Delta m_{\rm atm}^2 L/4E)$ is large.

 Minos cannot see the difference either if they run only with the low energy beam option.

 $\sin^2(\Delta m_{\rm atm}^2 L/4E)$ is large.

• CNGS will give us the answer (hopefully). $\sin^2(\Delta m^2_{\rm atm}L/4E) \text{ is small}.$

K2K electron events spectrum

- LSND
- LSND
- Conventional
- Conventional

Possible a small excess for high energies in the LSND scheme.

CERN to Gran Sasso (5 years and per kton)

New atmospheric fluxes

Several new calculations of atmospheric neutrino fluxes. [T.Montaruli this session]

All predicts that the neutrinos fluxes should be lowered compared to the standard ones (Bartol, Honda).

Smaller neutrino fluxes are mainly due to new meusuments of the amospheric μ fluxes.

 \Rightarrow Larger excess of ν_e .

Also new energy dependence:

- Sub-GeV 5% lower
- Multi-GeV 15% lower

[G.Battistoni et. al, hep-ph/9907408]

SK two neutrino fit to $\nu_{\mu} \rightarrow \nu_{\tau}$; Best fit upscale the normalization of the new predicted fluxes by 20%. [Totsuka this session]

Indicates that a three neutrino fit with $\Delta m^2_{\rm LSND}$ could be desirable.

Conclusions

- LSND and Atmospheric anomalies gives a good fit in the three-neutrino scheme. (improves the two-neutrino fit)
- Large LSND angles are favored and $sin^2(2\theta_{LSND})$ can be as large as 0.1.
- Δm^2_{LSND} migth be desirable for the electron ratios for atmospheric neutrinos. (especially with new neutrino fluxes)
- CNGS should tell us what scheme and therefore what mass pattern is realized.