4-Neutrino mass schemes and the likelihood of (3+1)-mass spectra

Thomas Schwetz*
Instituto de Física Corpuscular - CSIC, Univ. de València
W. Grimus, TS, Eur. Phys. J. C20 (2001) 1
M. Maltoni, TS, J.W.F. Valle, in preparation

Les Houches EuroConference on neutrino masses and mixings 18-22 June 2001

[^0]At present there are three indications in favor of neutrino oscillations:

- solar neutrinos: $\Delta m_{\text {sol }}^{2} \lesssim 10^{-4} \mathrm{eV}^{2}$
- atmospheric neutrinos: $\Delta m_{\mathrm{atm}}^{2} \sim 3 \times 10^{-3} \mathrm{eV}^{2}$
- LSND experiment: $\Delta m_{\mathrm{LSND}}^{2} \gtrsim 0.2 \mathrm{eV}^{2}$

We need at least 4 neutrinos to obtain 3 mass squared differences of different orders of magnitude $\Rightarrow 6$ possible 4-neutrino mass spectra:

(3+1)-mass spectra are disfavored by the data:
S.M. Bilenky, C. Giunti and W. Grimus, Proc. of Neutrino '96; Eur. Phys. J. C 1, 247 (1998)
N. Okada and O. Yasuda, Int. J. Mod. Phys. A 12, 3669 (1997)
V. Barger, S. Pakvasa, T.J. Weiler and K. Whisnant, Phys. Rev. D 58, 093016 (1998)
S.M. Bilenky, C. Giunti, W. Grimus and TS, Phys. Rev. D 60, 073007 (1999)

At Neutrino 2000 a new LSND analysis was presented - the allowed region was shifted to smaller mass squared differences \Rightarrow (3+1)-mass spectra less disfavored:
V. Barger, B. Kayser, J. Learned, T. Weiler, K. Whisnant, Phys. Lett. B 489, 345 (2000)
C. Giunti and M. Laveder, JHEP 0102, 001 (2001)
O.L.G. Peres and A.Yu. Smirnov, Nucl.Phys. B 599, 3 (2001)

SBL oscillation probabilities in (3+1)-spectra

$$
\Delta m_{\mathrm{sol}}^{2} \approx 0, \quad \Delta m_{\mathrm{atm}}^{2} \approx 0, \quad \Delta m_{\mathrm{LSND}}^{2} \equiv \Delta m^{2}
$$

4-neutrino unitary mixing matrix:

$$
\left(\begin{array}{c}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau} \\
\nu_{s}
\end{array}\right)=\left(\begin{array}{cccc}
U_{e 1} & U_{e 2} & U_{e 3} & U_{e 4} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\
U_{s 1} & U_{s 2} & U_{s 3} & U_{s 4}
\end{array}\right)\left(\begin{array}{c}
\nu_{1} \\
\nu_{2} \\
\nu_{3} \\
\nu_{4}
\end{array}\right)
$$

SBL $\stackrel{(-)}{\nu}_{\mu} \rightarrow \stackrel{(-)}{\nu}$ transition probability (LSND, KARMEN):

$$
P_{\nu_{\mu} \rightarrow \nu_{e}}=P_{\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}}=A_{\mu ; e} \sin ^{2} \frac{\Delta m^{2} L}{4 E}
$$

with

$$
A_{\mu ; e}=4\left|U_{e 4}\right|^{2}\left|U_{\mu 4}\right|^{2}
$$

SBL disappearance probability (Bugey: $\alpha=e$, CDHS: $\alpha=\mu$):

$$
P_{\nu_{\alpha} \rightarrow \nu_{\alpha}}=P_{\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\alpha}}=1-4\left|U_{\alpha 4}\right|^{2}\left(1-\left|U_{\alpha 4}\right|^{2}\right) \sin ^{2} \frac{\Delta m^{2} L}{4 E}
$$

we define: $\quad d_{e}=\left|U_{e 4}\right|^{2} \quad$ and $\quad d_{\mu}=\left|U_{\mu 4}\right|^{2} \quad \Rightarrow \quad A_{\mu ; e}=4 d_{e} d_{\mu}$

$$
3 \text { parameters: } d_{e}, d_{\mu}, \Delta m^{2}
$$

- $\bar{\nu}_{e}$ disappearance experiments:
- Bugey: total of 60 bins in positron energy for the ratios of the number of observed to expected events
- CHOOZ: $P_{\text {CHOOZ }}=1.01 \pm 2.8 \% \pm 2.8 \%$
taking into account the disappearance of solar ν_{e} :

$$
d_{e} \lesssim 10^{-2}
$$

- $\stackrel{(-)}{\nu}_{\mu} \rightarrow \stackrel{(-)}{\nu}$ appearance experiments:
- KARMEN: number of observed and expected events in 9 positron energy bins
$-\nu_{\mu} \rightarrow \nu_{e}$ oscillation search at NOMAD: number of observed and expected events in 14 positron energy bins
upper bound on $A_{\mu ; e}$
- ν_{μ} disappearance experiments:
- CDHS: 15 bins for the ratio of the number of events in detectors at 130 m and 885 m away from the neutrino source
taking into account the disappearance of atmospheric ν_{μ} :

$$
d_{\mu} \lesssim 0.03 \quad\left(\text { for } \quad 0.7 \mathrm{eV}^{2} \lesssim \Delta m^{2} \lesssim 10 \mathrm{eV}^{2}\right)
$$

- atmospheric neutrinos:
- 4-neutrino fit to SK and MACRO data performed in M.C. Gonzalez-Garcia, M. Maltoni and C. Peña-Garay, hep-ph/0105269

$$
d_{\mu} \leq 0.082(0.117) \quad \text { at } \quad 90 \%(99 \%) \mathrm{CL}
$$

We combine these data and calculate an upper bound on the amplitude $A_{\mu ; e}$, which can be compared to the allowed value obtained in the LSND experiment.

Statistical method

The data is combined by using a likelihood function:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{osc}}\left(d_{e}, d_{\mu}, \Delta m^{2}\right) & =\mathcal{L}_{\mathrm{Bugey}}\left(d_{e}, \Delta m^{2}\right) \mathcal{L}_{\mathrm{CDHS}}\left(d_{\mu}, \Delta m^{2}\right) \mathcal{L}_{\mathrm{KARMEN}}\left(d_{e} d_{\mu}, \Delta m^{2}\right) \\
& \times \mathcal{L}_{\mathrm{NOMAD}}\left(d_{e} d_{\mu}, \Delta m^{2}\right) \mathcal{L}_{\mathrm{atm}}\left(d_{\mu}\right) \mathcal{L}_{\mathrm{CHOOZ}}\left(d_{e}\right)
\end{aligned}
$$

Bayes' Theorem:

$$
p\left(d_{e}, d_{\mu}\right) \propto \mathcal{L}_{\text {osc }}\left(d_{e}, d_{\mu}, \Delta m^{2}\right) \pi\left(d_{e}, d_{\mu}\right)
$$

\Rightarrow probability density function in d_{e} and d_{μ} for a fixed value of Δm^{2}. We use a flat prior in d_{e} and d_{μ} in the physical region:

$$
\pi\left(d_{e}, d_{\mu}\right)= \begin{cases}\text { const } & \text { if } d_{e} \geq 0, d_{\mu} \geq 0 \quad \text { and } \quad d_{e}+d_{\mu} \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

We calculate an upper bound on the LSND amplitude

$$
A_{\mu ; e}=4 d_{e} d_{\mu} \leq A_{\beta} \quad \text { at } \quad 100 \beta \% \mathrm{CL}
$$

by the prescription

$$
\int_{4 d_{e} d_{\mu} \leq A_{\beta}} \mathrm{d} d_{e} \mathrm{~d} d_{\mu} p\left(d_{e}, d_{\mu}\right)=\beta
$$

Bounds on the LSND amplitude $A_{\mu ; e}$ in (3+1)-mass spectra from the experiments Bugey, CDHS, KARMEN, NOMAD, CHOOZ and atmospheric neutrino data.

90% CL bound on $A_{\mu ; e}$ in $(2+2)$-mass spectra. Also shown are the $90 \% \mathrm{CL}$ bounds from KARMEN and from the $\bar{\nu}_{e}$ disappearance experiments Bugey and CHOOZ .

Including tritium β-decay

We assume that the lowest neutrino mass is much smaller than the sensitivity of the tritium experiments. This gives the weakest restriction on Δm^{2}.

Analysis of tritium β-decay in
Y. Farzan, O.L.G. Peres and A.Yu. Smirnov, hep-ph/0105105:

$$
\begin{array}{ll}
(3+1) \mathrm{A}: & m_{\mathrm{eff}}^{2} \ll 1 \mathrm{eV}^{2} \\
(3+1) \mathrm{B}: & m_{\mathrm{eff}}^{2} \approx \Delta m^{2}
\end{array}
$$

We use the likelihood function

$$
\mathcal{L}_{\text {tot }}\left(d_{e}, d_{\mu}, \Delta m^{2}\right)=\mathcal{L}_{\beta}\left(\Delta m^{2}\right) \mathcal{L}_{\text {osc }}\left(d_{e}, d_{\mu}, \Delta m^{2}\right)
$$

where

$$
\mathcal{L}_{\beta}\left(\Delta m^{2}\right) \propto \begin{cases}\text { const } & \text { for (3+1)A } \\ \exp \left[-\frac{1}{2} \sum_{i}\left(\frac{\left(m_{\text {eff }}^{2}\right)_{i}-\Delta m^{2}}{\sigma_{i}}\right)^{2}\right] & \text { for (3+1)B }\end{cases}
$$

with the values given at Neutrino 2000:

$$
\begin{array}{ll}
\text { Troitsk: } & m_{\text {eff }}^{2}=-1.0 \pm 3.0 \pm 2.1 \mathrm{eV}^{2} \\
\text { Mainz: } & m_{\text {eff }}^{2}=\left\{\begin{array}{l}
+0.6 \pm 2.8 \pm 2.1 \mathrm{eV}^{2} \\
-1.6 \pm 2.5 \pm 2.1 \mathrm{eV}^{2}
\end{array}\right.
\end{array}
$$

Bayes' Theorem with a flat prior density in d_{e} and d_{μ} in the physical region, and a flat prior density in $\log \Delta m^{2} \Rightarrow p\left(A_{\mu ; e}, \log \Delta m^{2}\right)$

We calculate an allowed region at the $100 \beta \%$ CL by demanding

$$
\int \mathrm{d} A_{\mu ; e} \mathrm{~d}\left(\log \Delta m^{2}\right) p\left(A_{\mu ; e}, \log \Delta m^{2}\right)=\beta
$$

The boundary in the $A_{\mu ; e}-\Delta m^{2}$ plane is determined such that the value of $p\left(A_{\mu ; e}, \log \Delta m^{2}\right)$ along this line is constant.

Allowed regions in the $A_{\mu ; e}-\Delta m^{2}$ plane at 99% CL for spectra of the types $(3+1) \mathrm{A}$ and $(3+1) \mathrm{B}$ including tritium β-decay.

Conclusions

- We have performed an analysis of neutrino oscillation data for the (3+1)mass spectra in a Bayesian statistical framework.
- We use data from the experiments Bugey, CDHS, KARMEN, CHOOZ, NOMAD and atmospheric neutrino experiments to calculate an upper bound on the LSND amplitude $A_{\mu ; e}$:
- Our bound on $A_{\mu ; e}$ at 95% CL has no overlap with the region allowed by LSND at 99\% CL.
- Our bound on $A_{\mu ; e}$ at 99% CL has small overlaps with the region allowed by LSND at 99% CL around $\Delta m^{2} \sim 0.9,2$ and $6 \mathrm{eV}^{2}$.
- We perform a different statistical analysis including also results from tritium β-decay experiments:
- Our allowed regions at 95\% CL have no overlap with the region allowed by LSND at 99\% CL.
- Our allowed regions at 99\% CL have small overlaps with the region allowed by LSND at 99% CL only around $\Delta m^{2} \sim 0.9$ and $2 \mathrm{eV}^{2}$.

We conclude that the (3+1)-class of 4-neutrino mass spectra is very unlikely

[^0]: *supported by ESF network 86 and Marie Curie Training Grant HPMT-2000-00124

