

9th International Workshop on "Neutrino Telescopes"

Les Houches, Juin 20th, 2001

Global Analysis of Neutrino Oscillation Data

GLF

- 1. Introduction: neutrino oscillation evidence
- 2. The "standard" 3v interpretation
- 3. 3v oscillations: atmospheric neutrinos
- 4. 3v oscillations: solar neutrinos
- 5. Conclusions

Neutrino oscillation evidence

Two kinds of observables:

total neutrino event rates

crucial to assess oscillations unambiguously !!!

Present evidence

	total rate	spectra
LSND	$P(v_{\mu} \rightarrow v_{e}) > 0$ (controversial)	no significant info
solar	P(v _e →v _e) < 1 (robust)	no significant indication for $\frac{\partial P_{ee}}{\partial (t, E, L)} \neq 0$
atmospheric	$P(v_{\mu} \rightarrow v_{\mu}) < 1$ (robust)	$\frac{\partial P_{\mu\mu}}{\partial L} \neq 0 \text{(very robust)}$ $\frac{\partial P_{\mu\mu}}{\partial E} \neq 0 \text{(robust)}$

Limiting our attention to the "robust" information, we can describe it within a "standard" 3v interpretation

2. The "standard" 3v interpretation

The two strongest sources of evidence for neutrino oscillations (atmospheric and solar v anomalies) can be accomodated in a "standard" framework (3v oscillations) that requires a minimal modification of the electroweak model:

status and prospects of such interpretative framework will be discussed in this talk

Parameters probed by oscillations

MINIREVIEW

PARAMETER	STATUS	PROSPECTS
m²	~ $3 \times 10^{-3} \text{ eV}^2$ within a factor of ~ 2	Good. It will be better and better determined by atm. and LBL expts.
δm²	≠0 but multiple ranges allowed (MSW,QV)	Selection of one of the different solutions will take years
Ψ	$s_{\psi}^2 \sim 1/2$ within a factor of ~ 2	as for m ²
ω	≠0 but multiple ranges allowed (MSW,QV)	as for δm^2
φ	$s_{\phi}^2 \lesssim$ few % (CHOOZ) but no reason for $s_{\phi}^2 = 0!$	Its determination will be one of the major challenges for future reactor, atmospheric and LBL experiments.
δ	unconstrained. Effects suppressed by δm ² /m ²	very bad before v factories

Graphical representation of parameter space

 $\delta m^2 \ll m^2$ implies that: (1) $\delta_{CP} \sim \text{unobservable}$ effects doubly suppressed by $\begin{cases} \delta m^2/m^2 \rightarrow 0 \\ \sin^2 \phi \rightarrow 0 \end{cases}$

we will assume U real. Difficult to prove $\delta_{CP} \neq 0$ in future exps.

- (2)**Solar** v (up to terms of the order $\delta m^2/m^2$ the parameter space is spanned only by three variables:
 - $(\delta m^2, \omega, \phi) \iff (\delta m^2, U_{e1}^2, U_{e2}^2, U_{e3}^2)$ with $U_{e1}^2 + U_{e2}^2 + U_{e3}^2 = 1$ or equivalently (unitarity)

Relevant the mass composition of v_e : $v_e = U_{e1} v_1 + U_{e2} v_2 + U_{e3} v_3$

Atmospheric v (or, in general, terrestrial v): up to terms of the order $\delta m^2/m^2$ (3)the parameter space is spanned by only three variables:

 $(m^2, \psi, \phi) \iff (m^2, U_{e3}^2, U_{\mu3}^2, U_{\tau3}^2)$ with $U_{e3}^2 + U_{\mu3}^2 + U_{\tau3}^2 = 1$ or equivalently (unitarity) Relevant the flavour composition of v_3 : $v_3 = U_{e3} v_e + U_{u3} v_u + U_{\tau 3} v_{\tau}$

 U_{e3}^2 probed by solar AND atmospheric v experiments

A remark:

Beyond the Standard 3v interpretation

Testing the "standard" 3v framework for solar+atmospheric v data does not simply mean refining the measurement of

 $(\delta m^2, m^2, \omega, \psi, \phi)$

It means also testing and (dis)proving models beyond this framework, which include

 \bigcirc Either new v states (e.g. v_s to explain solar+atm+LSND)

 \bigcirc or new v interactions (FCNC, violation of relativity, v decay, etc.)

It is particularly important to solve the LSND-KARMEN dilemma in the $\nu_{\mu} \leftrightarrow \nu_{e}$ channel, with a new, more sensitive short baseline experiment (MiniBoone)

3. 3v oscillations: atmospheric neutrinos

being

 $U_{e3}^{2} = S_{\phi}^{2}$ $U_{\mu3}^{2} = C_{\phi}^{2} S_{\psi}^{2}$ $U_{\tau3}^{2} = C_{\phi}^{2} C_{\psi}^{2}$

The analysis includes:

The latest (December 2000: 79.5 kTy) SK data:

- 10 SubGeV e-like bins
- 10 SubGeV μ -like bins
- 10 MultiGeV e-like bins
- 10 MultiGeV μ -like bins
 - 5 stopping upgoing μ bins
- 10 through-going μ bins

The latest (1999) CHOOZ total rate

1 data point

SK zenithal distributions (Dec. 2000 data: 79.5 kTy) (normalized to NO OSCILLATION in each bin)

Allowed regions in a three-flavour approach (Dec. 2000 SK data: 79.5 kTy)

Allowed regions in a three-flavour approach (Dec. 2000 SK data: 79.5 kTy)

Combining Superkamiokande and CHOOZ (Dec. 2000 SK data: 79.5 kTy)

scenarios with large $\nu_e\,$ mixing excluded, e.g. threefold maximal mixing

Limits on U_{e3}^2 (ψ unconstrained)

shown are the projections of the 3v allowed volume onto the plane (m^2 , U_{e3}^2)

Note: threefold maximal mixing $(\sin^2 \varphi = 1/3)$ excluded by SK+CHOOZ, although allowed by SK alone

Bounds on m² for unconstrained 3v mixing (79.5 kTy SK data)

best-fit @ $m^2 = 3.0 \times 10^{-3} eV^2$

 $\begin{array}{c} m_{\nu}^{2} \\ \hline \end{array} \\ V_{1} \\ V_{1} \\ V_{1} \\ V_{1} \end{array} \\ \begin{array}{c} \text{The fit for } -m^{2} \text{ is very similar: SK does not} \\ \text{distinguish the two cases. In the limit of} \\ \text{pure } \nu_{\mu} \leftrightarrow \nu_{\tau} \text{, i.e. } \phi = 0, \\ \hline \end{array} \\ \begin{array}{c} \hline \end{array} \\ V_{3} \\ \end{array} \\ \begin{array}{c} P_{\text{osc}} \left(m^{2}\right) = P_{\text{osc}}^{\text{vac}} \left(m^{2}\right) = P_{\text{osc}}^{\text{vac}} \left(-m^{2}\right) \end{array}$

For small ϕ there are small differences due to matter effects, unobserved at present

Best-fit distributions

Possible deviations from flat due to $v_{\mu} \leftrightarrow v_{e}$ oscillations are typically smaller than these

Sources of possible deviations:

φ ≠ 0
subleading δm² effects if δm² ~ 10⁻⁴ eV²

Both effects may alter the SGeV/MGeV e distributions: much higher SK statistics needed to see such effects !!

Progress in m^2 bounds for unconstrained 3v mixing

(*) GLF, E. Lisi, D. Montanino and G. Scioscia, PRD 55 (1997) 4385

(**) GLF, E. Lisi, A. Marrone and G. Scioscia, PRD 59 (1999) 033001

(***) GLF, E. Lisi and A. Marrone, this talk

Tremendous impact of Superkamiokande in constraining m²

Progress in constraining mixing (qualitative)

allowed

Tremendous impact of CHOOZ in constraining ϕ

Status of (m^2, ψ, ϕ) constraints

- 1 $m^2 \simeq 3 \times 10^{-3} \text{ eV}^2$ within a factor of 2 (1.5 ÷ 6.0 × 10⁻³ eV²)
- 2 $s_{\psi}^2 \simeq 0.5 \pm 0.17$
- 3 $s_{\phi}^2 \lesssim$ few percent

Prospects

- SK will steadily narrow the range of (m^2, s_{ψ}^2) until systematics will dominate. Next major improvement will be provided by LBL experiments.
 - Signals of $s_{\sigma}^2 \neq 0$ are, and will be, more difficult to observe:
 - SK \Rightarrow Typical signals of $s_{\phi}^2 \neq 0$ are smaller than present 1 σ statistical uncertainties. To establish them at the 2 σ level, more than 4 years are required....(much more if systematics are included ...)
 - LBL \Rightarrow Signals of $s_{\phi}^2 \neq 0$ should be searched in the $v_{\mu} \leftrightarrow v_e$ channel, (with $P_{e\mu} \propto s_{\phi}^2$). However, CHOOZ implies that S/B ≤ 1 in LBL. So, the e-flavor background should be known precisely. This is difficult but important: $\phi \neq 0$ is the only chance to observe MSW effect with terrestrial exps. (apart from the "exotic" $v_{\mu} \leftrightarrow v_s$ case)
- v factories ⇒ Of course, they may provide the real option to observe $s_{\phi}^2 \neq 0$ in a "relatively far" future
 - reactors ⇒ Next logical step to increase the sensitivity to s_{ϕ}^{2} is to place a near detector. There is a proposal of Krasnoyarsk.

A remark on LBL

- If m^2 is not too low, it is likely that K2K can observe v_{μ} disappearance and confirm SK (hints from current K2K data)
- Therefore, LBL experiments should concentrate on what cannot be done in SK and K2K or in new atmospheric v detectors, namely:
 - \Rightarrow v_{τ} appearance
 - \Rightarrow
- v_{e} appearance

appearance searches should be the main distinctive feature of LBL experiments

N.B. - Recent (weak) evidence for v_t appearance in SK, but on a statistical basis: only LBL (e.g. OPERA) should assess v_{τ} appearance on a event by event basis

4. 3v oscillations: solar neutrinos

$$\mathbf{v}_{e} = \mathbf{U}_{e1} \, \mathbf{v}_{1} + \mathbf{U}_{e2} \, \mathbf{v}_{2} + \mathbf{U}_{e3} \, \mathbf{v}_{3} = \mathbf{S}_{\phi} \, \mathbf{v}_{3} + \mathbf{C}_{\phi} \, (\mathbf{S}_{\omega} \, \mathbf{v}_{1} + \mathbf{C}_{\omega} \, \mathbf{v}_{2})$$

being

 $U_{e3}^{2} = S_{\phi}^{2}$ $U_{e2}^{2} = C_{\phi}^{2} C_{\omega}^{2}$ $U_{e1}^{2} = C_{\phi}^{2} S_{\omega}^{2}$

The analysis includes:

18 SK energy bins (-1 free renormalization factor)

day-night effect from SK including separately Sp(D) & Sp(N)

In the following we will assume: SSM = BP 2000 $\phi(hep) = SSM value$

Solar neutrino problem, 2000

- clear evidence of the solar neutrino deficit!
- theor. error >> expt. error

 We do not expect to improve our understanding of the solar v deficit by just increasing the accuracy of the total flux measurements

 2ν oscillations ($\phi = 0$): total rates

2v oscillations ($\phi = 0$): SK spectrum

regions excluded by Sp(D) + Sp(N) (hep/SSM=1)

Comment:

Poor overlap between regions allowed by spectrum and by rates (see the previous figure)

2v oscillations ($\phi = 0$)

2v oscillations ($\phi = 0$)

Inclusion of the SNO data !!

 ϕ small (CHOOZ) implies that $P_{3\nu} \sim P_{2\nu}$, so why we study the case of unconstrained ϕ ?

Two reasons:

Investigate if solar v data alone (without CHOOZ) prefer small φ , in the same way as atmospheric data alone

Study the behaviour of the usual 2v solutions, in particular SMA, LMA and LOW, under small ϕ perturbations

In the following $\phi(hep) = SSM$ value is assumed.

3v solutions

3v solution

constraints from Sp(Day) + Sp(Night) (hep/SSM=1)

Comments: Sp(Day)+Sp(Night) consistent with no oscillation ($s_{\phi}^2 = 1$) \Rightarrow no bound on s_{ϕ}^2 , although $s_{\phi}^2 = 0$ slightly preferred

3v solutions (hep/SSM = 1)

total rates with constraints from Sp(D)+Sp(N)

Comments:

Still loose bounds ($s_{\phi}^2 < 0.7$) with $s_{\phi}^2 \sim 0.1$ preferred For small ϕ , maximal mixing solutions are allowed ! The LOW solution migrates toward $\omega = \pi/4$, and one can even have solutions for $\omega = \pi/4 + \varepsilon$ (completely missed if one uses $\sin^2 2\omega$ as variable)

3v solutions @ maximal mixing

Comparison between "LOW" and "LMA" solutions assuming maximal $v_{1,2}$ mixing: $U_{e1}^2 = U_{e2}^2$ ($\omega = \pi/4$)

At maximal (v_1, v_2) mixing:

the LOW solution is enhanced for $U_{e3}^2 \sim 0.05$ $\chi_{min}^2 = 39.9$ (for $\delta m^2 = 7.8 \times 10^{-8} \text{ eV}^2$ and $\sin^2 \phi \sim 6 \times 10^{-2}$) The previous result is interesting for model building: bimaximal mixing can be reached not only with the LMA solution, but also with the LOW solution, but as a bimaximal mixing at small φ :

 $\Delta \chi^2$ as a function of ϕ (δm^2 and ω unconstrained)

Comments:

transition from the LMA to the LOW solution for sin²φ larger than 0.1

existence of an upper bound on $tan^2 \varphi$

Borexino total rates compared with the SMA, LMA and LOW solutions

Borexino N-D asymmetry compared with the SMA, LMA and LOW solutions

Borexino discovery potential compared with the SMA, LMA and LOW solutions

Borexino N-D asymmetry compared with the LMA and LOW solutions at maximal mixing ($\omega = \pi/4$)

Gallium Neutrino Observatory

potential discovery of GNO compared with the SMA, LMA and LOW solutions

- expected gallium absorption rates (in SNU) averaged over "winter" and "summer" (eccentricity effects removed)
- MSW-induced seasonal variations of the order ~4-6 SNU are expected in a Ga experiment within the LOW solution (mainly from pp neutrinos)
- such variations might well be observed at GNO, the expected statistical error after one solar cycle being ~2 SNU (or less)

Gallium Neutrino Observatory

Comparison with the LMA and LOW solutions at maximal mixing ($\omega = \pi/4$)

- expected gallium absorption rates (in SNU) averaged over "winter" and "summer" (eccentricity effects removed)
- MSW-induced seasonal variations of the order ~4-6 SNU are expected in a Ga experiment within the LOW solution (mainly from pp neutrinos)
- such variations might well be observed at GNO, the expected statistical error after one solar cycle being ~2 SNU (or less)

Beyond the "one dominant mass scale approximation"

CHOOZ limits to the solar neutrino problem

1 CHOOZ excludes large v_e mixing between any two states separated by $\Delta m^2 \ge 10^{-3} eV^2$

3v solar solutions for finite m² (m² = $1.5 \times 10^{-3} \text{ eV}^2$)

Comments:

- **Removal of the m² =** ∞ approximation in the solar v analysis would not practically change the solar v solutions
- In particular, no upper bound on δm^2 at 99% C.L. from solar v data alone

CHOOZ excluded region compared with the 3v solar solutions $(m^2 = 1.5 \times 10^{-3} \text{ eV}^2)$

 \Rightarrow Strong constraints on both δm^2 and $tan^2 \phi$ when solar + CHOOZ data are taken into account!

More stringent constraints on $tan^2 \phi$ for increasing m^2

solar + CHOOZ data

$(m^2 = 6.0 \times 10^{-3} eV^2)$

The solar solutions in the limit $\varphi = 0$ are independent of m^2 (they correspond to a pure 2v case)

solar + CHOOZ data

χ^2 behaviour for different values of m^2

Strong constraints on $tan^2 \phi$ when solar + CHOOZ data are taken into account

More stringent constraints on $tan^2 \phi$ for increasing m^2

solar + CHOOZ data

 χ^2 behaviour in terms of of δm^2 (tan² φ unconstrained)

More stringent constraints on δm^2 from solar + CHOOZ data

Summary on solar v (in 6 points)

- 1 Still multiplicity of solar neutrino solutions: MSW: LMA preferred, LOW promising, SMA less favored VAC: serious problems for VAC, but interest for quasi-VAC (in the range $10^{-8} \div 10^{-9} \text{ eV}^2$)
- 2 The LOW solution is acceptable and can provide

maximal $v_1 \leftrightarrow v_2$ mixing ($\omega = \pi/4$) for nonzero φ

3 Bounds on φ from solar v data alone are loose (even more than for atmospheric data). However, their preference for

 $s_{\phi}^{2} \sim 0$

is a good sign of consistency with CHOOZ.

- 4 CHOOZ provides upper bounds on s_{φ}^2 and δm^2
- 5 Unambiguous selection of ONE solution will not be possible in SK for several years. Much higher statistics needed (e.g., in the spectrum).
- 6 We absolutely need more solar v data ! Eagerly waiting for SNO, GNO, Borexino results ..., as well as for direct tests of LMA with KAMLAND, to improve discrimination of solar v solutions.

3v summary

Within the "standard" 3v interpretation of neutrino oscillation data, we have a lot of experiments or projects constraining the neutrino parameters:

probed by solar neutrino experiments probed by "terrestrial" neutrino experiments

- At present, most stable constraints on m^2 and $U_{\mu3}^2$, $U_{\tau3}^2$.
- CHOOZ tells us that U²_{e3} must be small, and atmospheric and solar data also prefer small φ, but there is no reason for it to be zero !
- Constraints on δm^2 , U_{e1}^2 , U_{e2}^2 depend on which solar solution is picked up.
- CHOOZ + solar data \longrightarrow upper bound on δm^2
 - Most important tasks for the next years:
 - \Rightarrow
- measure or constrain further U_{e3}^2 (reactors & LBL)
 - reduce the multiplicity of solar v solutions
 - check and (dis)prove non-standard interpretations