Determining the sign of Δ_{31} at long baseline experiments

S. Uma Sankar

Indian Institute of Technology, Bombay

Talk at Les Houches, June 21 2001

Based on work with Mohan Narayan

hep-ph/0011297

Prelimenaries

Assume oscillations between three active neutrino flavours which can explain solar and atmospheric neutrino problems.

Since $\Delta m^2_{atm} \gg \Delta m^2_{sol}$, one of the mass-squared differences is much smaller than the other two.

$$\Delta m_{sol}^2 = \Delta_{21} \ll |\Delta_{31}| \simeq |\Delta_{32}| = \Delta m_{atm}^2$$

Two different mass patterns can lead to this

- $m_1 < m_2 \ll m_3$ where all Δ 's are positive (called natural hierarchy)
- $m_1 > m_2 >> m_3$ where all Δ 's are negative (called inverted hierarchy)

Use Kuo-Pantaleone parametrization for mixing matrix

$U = U_{23}(\theta_{23})U_{13}(\theta_{13})U_{12}(\theta_{12})$

Then

- Solar neutrino problem depends only $\Delta_{21},$ θ_{12} and θ_{13}
- Atmospheric neutrino problem depends only $\Delta_{31}, \, \theta_{13}$ and θ_{23}

CHOOZ places a strong bound $\sin^2(2\theta_{13}) \le 0.1$ implying $\theta_{13} \le 9^\circ$.

Then $\theta_{12} \simeq \theta_{sol}$ and $\theta_{23} \simeq \theta_{atm} = \pi/4$.

Which mass mattern is realized in nature? To put it another way Is Δ_{31} positive or negative?

Need matter effects to answer this question. They boost $\nu_{\mu} \rightarrow \nu_{e}$ oscillation probability if Δ_{31} is positive and suppress it if Δ_{31} is negative.

The situation is reversed for anti-neutrinos. Neutrino factories, with ν_{μ} and $\bar{\nu}_{\mu}$ beams, can measure the difference between $\nu_{\mu} \rightarrow \nu_{e}$ and $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ oscillations to determine the sign of Δ_{31} . But the energies of the beams will be very high (tens of GeV) and one needs extremely long baselines (5 – 10 thousand km) to have appreciable $\nu_{\mu} \rightarrow \nu_{e}$ oscillation signal.

At Long Baseline experiments, with baselines of 730 km, matter effects are significant. These can be observed if the experiment is sensitive to small values of θ_{13} .

Three flavor $\nu_{\mu} \rightarrow \nu_{e}$ oscillation probability, including matter effects, is

$$P_{\mu e}^{m} = \sin^{2}\theta_{23}\sin^{2}(2\theta_{13}^{m})\sin^{2}\left(1.27\frac{\Delta_{31}^{m}L}{E}\right)$$

Matter effects do not change θ_{23} because it mixes ν_{μ} and ν_{τ} .

In the above equation,

 $\Delta_{31}^{m} = \sqrt{(\Delta_{31} \cos 2\theta_{13} - A)^{2} + (\Delta_{31} \sin 2\theta_{13})^{2}}$ $\sin 2\theta_{13}^{m} = \sin 2\theta_{13} \frac{\Delta_{31}}{\Delta_{31}^{m}}$

 $A = 0.76 \times 10^{-4} \rho$ (in gm/cc) E (in GeV)

No advantage in tuning the energy to $E_{res} \simeq 15$ GeV. At this energy $\sin^2(2\theta_{13}^m) = 1$ but Δ_{31}^m is minimum. This leads to $P^m(\nu_\mu \to \nu_e) \simeq P(\nu_\mu \to \nu_e)$ around $E \sim E_{res}$.

Which energy is best suited for observing matter effects?

 $P(\nu_{\mu} \rightarrow \nu_{e})$ is maximum when the phase 1.27 $\Delta_{31}L/E = \pi/2$. To maximize the $\nu_{\mu} \rightarrow \nu_{e}$ oscillation signal, it is best to tune the energy of the neutrino beam to $E = E_{\pi/2}$.

Matter effects are also maximum at $E = E_{\pi/2}$. Hence tuning the beam energy to $E_{\pi/2}$ confers the double benefit of maximizing the signal and maximizing the sensitivity to matter effects.

For $\Delta_{31} = 3.5 \times 10^{-3} \text{ eV}^2$ and L = 730 km, $E_{\pi/2} = 2 \text{ GeV}$.

Two points from the figure:

- For $E > 2E_{\pi/2}$, matter effects have negligible effect on $P_{\mu e}$. Hence the higher energy range $E > 2E_{\pi/2}$ can be used to determine the vacuum value of θ_{13} .
- In the neighbourhood of $E_{\pi/2}$, we have $P^m_{\mu e} = 1.25 P_{\mu e}$ if Δ_{31} is positive and $P^m_{\mu e} = 0.8 P_{\mu e}$ if Δ_{31} is negative.

Using the vacuum value of θ_{13} one can predict the number of events expected in the lower energy range $0 < E < 2E_{\pi/2}$ for Δ_{31} positive and for Δ_{31} negative. Measuring electron events in this energy range will tell us which prediction is correct. How about backgrounds?

Two major sources

- Electron events coming from the ν_e component of the beam (about 1%).
- Neutral Current events of ν_{μ} (very large).

To study the relative effects of the signal to background, we consider a neutrino beam spectrum similar to MINOS low energy beam, which peaks around 3.5 GeV.

In case of vacuum oscillations, the signal events are split in the ratio 3 : 1 between the lower energy ($0 < E < 2E_{\pi/2}$) region and the higher energy ($E > 2E_{\pi/2}$) region, for a baseline of L = 730 Km. The background events, which are proportional to the ν_{μ} CC events, are split in the ratio 4 : 6 between the same energy regions.

Suppose the minimum value of θ_{13} an experiment can measure is ε . To do this, we suppose that, it is capable of detecting N signal electron events above the background.

If θ_{13} is equal to 2ε , then the number of signal events is 4N. Of these, N will be in the higher energy region. This number is larger than the background and can determine the vacuum value of θ_{13} .

In case of vacuum oscillations, the number of events in the lower energy range will be 3N. Matter effects will boost this number to 3.75N if Δ_{31} is positive and suppress it to 2.4N if Δ_{31} is negative.

In each case, the change induced by the matter effects in the lower energy range is larger than the number of background events in the lower energy range, which is less than half the total background.

Hence, if an experiment is sensitive to θ_{13} at a level ε , then it is automatically sensitive to the sign of Δ_{31} if θ_{13} is as large as 2ε .

FIGURES

FIG. 1. $\nu_{\mu} \rightarrow \nu_{e}$ oscillation probabilities vs E for $|\Delta_{31}| = 3.5 \times 10^{-3} \text{ eV}^{2}$, $\sin^{2} 2\phi = 0.1$ and L = 730 km. The middle line is $P_{\mu e}$, the upper line is $P_{\mu e}^{m}$ with Δ_{31} positive and the lower line is $P_{\mu e}^{m}$ with Δ_{31} negative.