F.Pierre Saclay

Very Long Baseline with neutrino Narrow Band Beams.

<u>Outline :</u>

- Introduction.
- An exercise : FNAL to Antares.
- Summary and comments.

F.Pierre

INTRODUCTION.

- The most recent Δm^2 values for atmospheric neutrinos are lower than previously anticipated. The true value may be below $2.10^{-3} eV^2$
- The dip of the oscillation may be difficult to establish.
- B.Richter has suggested the use of NBB in order to do appearance of ν_e in LBL.

Here, we consider the use of NBB to achieve reappear eance of ν_{μ} in Very Long Baseline experiments.

WHY NBB ?

- The band need not to be very narrow, it has to match the oscillation pattern.
- The energy need not to be measured in the detector : it is known from the beam(a scan is made, by changing the setting of the beam).
- Therefore, the only task of the detector is to tell that there is an event in coincidence with the arrival of the beam⇒ reject backgrounds from atmospheric neutrino events, cosmic muons and local sources.

ታ<u></u>ድ ት

NuMI: Flexible Neutrino Beam

- CC Events Rates in Minos 5kt detector:
 - High 16,000/yr
 - Medium 7,000/yr
 - Low 2,500/yr

A. Para.Fermilab Sorting out neutrino oscillations 32 with MINOS

111

MINOS beams

extrapolation from MINOS beams to NBB

NuMI WBB	CC event/year/kt	NBB band	CC event/kt/year
NuMI WBB	at 730 km $$		at 7300 km
PH2(high)	950	10-15 GeV	9.5
PH2(high)	340	$8-10 \mathrm{GeV}$	3.4
PH2(medium)	1400	$6-8 \mathrm{GeV}$	3.8
PH2(medium)	1400	$4-6 \mathrm{GeV}$	3.0
PH2(low)	500	$3-4 \mathrm{GeV}$.55

Table 1:

Extrapolation from NuMI WBB to various possibilities of NBB. The last column is an estimate of the ν_{μ} flux at 7300 km, in units of event per kiloton of detector per year for charge current interaction without oscillation

effective downward beams

Account for efficiency of beamline. For long baseline, large angle from horizontal: $7300 \text{ km} \leftrightarrow 35^{\circ}$ $9300 \text{ km} \leftrightarrow 47^{\circ}$

At FNAL, beamline needs to fit in 200m rock layer. Need room to: (room to optimize?)

bend protons downward target and focussing decay channel shielding and (optional) near detector

Figure 1: From US study

Figure 2: abcissa : nominal energy of u_{μ} beam, in GeV

Effective efficiency for event trigger

EXTREMELY PRELIMINARY !

Figure 3: abcissa : nominal energy of u_{μ} beam, in GeV

Oscillation pattern

$$\delta m^2 = .002 eV^2, \ sin^2(2 * \theta) = 0.9$$

Les Houches, june 2001.

Figure 4: abcissa : nominal energy of ν_{μ} beam, in GeV. $\delta m^2 = .002 eV^2$, $sin^2(2 * \theta) = 0.9$

Simulation : observed nb. of events for each energy, for 1000 expected(no osc.)

At 5-10 Gev, the running time is a few months per point, depending on decay tunnel and trigger efficiency.

Summary and comments :

- Narrow band beams towards existing Megaton(s) detectors give many events to study oscillation pattern \Rightarrow reappeareance of ν_{μ} .
- Building such a beam below 30° is a major operation.
- Understanding such a beam with a near detector is not an easy task.
- Understanding the trigger efficiency in the Megaton(s) detector is not an easy task.
- A useful first step toward neutrino factories?