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Introduction
Optimizing the search for a complex phase in the 
leptonic mixing matrix far from trivial

•A priori, the effect depends on L and E in a complicated 
way (In vacuum, the scaling of the effect with L/E can help an intuitive 
understanding of the oscillation behavior)

•Measurement precision depends on practical limits on 
machine power, maximal energy/flux, detector mass

The choice of the baseline is critical: at the time of the Neutrino 
Factory, there will be already experiments located at a distance of 
250 km from JHF and 730 km from CERN and FNAL; if new sites
are really needed, due to physics considerations, that would require 
major new investments
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νe→νµ oscillation probability

P(νe→νµ)=P(νµ→νe)=
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+1/2c2
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Following the conventional formalism for leptonic mixing, CP-
violating effects are observed in appearance transitions involving 
the first family. Experimentally, νµ→νe is clearly favored.

This probability is composed of three terms:

Independent of δ

CP-even

CP-odd
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L/E regimes

∆m2
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Observable quantities

•∆δ≡ P(νe→νµ;δ=π/2)- P(νe→νµ;δ=0)
Compares oscillation probabilities as a function of Eν measured with wrong-sign muon event spectra, 
to MonteCarlo predictions of the spectrum in absence of CP violation

•∆CP(δ)≡ P(νe→νµ;δ)- P(νe→νµ;δ)
Compares oscillation probabilities measured using the appearance of νµ and νµ, running the storage 
ring with a beam of stored µ+ and µ-, respectively. Matter effects are dominant at large distances

•∆T(δ)≡ P(νe→νµ; δ)- P(νµ→νe; δ)
Compares the appearance of νµ and νe in a beam of stored µ+ and µ-. As opposite to the previous case, 
matter effects are the same, thus cancel out in the difference

•∆T(δ)≡ P(νe→νµ; δ)- P(νµ→νe; δ) 
Same as previous case, but with antineutrinos. This effect is usually matter-suppressed with respect to 
the neutrino case.
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Measuring ∆T

Two methods have been proposed to solve the problem of beam νe 
background :

• Beam polarization (not very effective; see A.Blondel, A.Bueno, M.Campanelli, 
A.Rubbia, Monterey proceedings)

• Electron charge (discussed later in this talk)

The comparison of νµ� νe and νe� νµ oscillation probabilities offers 
a direct way to highlight a complex component in the mixing 
matrix, independent of matter and other oscillation parameters.

This measurement is not directly accessible at a Neutrino 
Factory with a conventional detector due to the large νe

background in the beam. It would add a considerable 
improvement to the physics reach of a Neutrino Factory
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Oscillation probabilities

2 cosθ13 sinδ sin2θ12 sin2θ13 sin2θ23 ×
sin(∆m2

12 L/4Eν) sin(∆m2
13 L/4Eν) sin(∆m2

23 L/4Eν)

�
1

Complex term in matrix Need LA MSW Oscillation P goes like sin2θ13
hence, ∆CP/�P independent of θ13

For a complex mixing matrix (in vacuum)

Oscillating term only depends on L/E

∆CP=∆T=
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Neutrino Factory fluxes

Flux 
scales as 

E2
µµµµ////L2

Total event rate 
scales as 

�E3
µµµµ////L2

µ− → e−ν eνµ    or   µ+ → e+νeν µ
P. Lipari, hep-ph/0102046

Eµµµµ=5, 10, 20, 40=5, 10, 20, 40=5, 10, 20, 40=5, 10, 20, 40 GeV

� ∝∝∝∝ Eν ν ν ν 
2222

dN
dx

∝ x2 1− x( ) x ≡ Eν / Eµ

Forward neutrino spectrum  

fixed by µ µ µ µ decay kinematics

Only scales with energy

Integrating:
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Scaled probabilities

probability

1. p→const when Eν →∞
2. It correctly “weighs” the 
probabilities with the Eνννν
dependence of the NF νννν spectrum
3. p can be directly compared at 
different baselines

Eν

p ≡ P νe → νµ( )× Eν
2 L2

Approximate Eνννν-
dependence of 
NF νννν-spectrum

Flux 
attentuation 
with distance

ν in matter

ν in matter

in vacuum

We define:
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CP violation at high energy?

P νe → νµ ,δ =
π
2

 
 

 
 − P νe → νµ ,δ = 0( )∝ cosδ

P νe → νµ( )× Eν
2 L2

See also P. Lipari, hep-ph/0102046

1. The Eν
2 term takes into account 

that the NF likes to go to high energy 

� damps the part ∆m2
21 (L/4Eν)≈1

2. At “high energy”, i.e. ∆m2
21

(L/4Eν)<<1 & ∆m2
32 (L/4Eν)<<1, 

there is no more oscillation 

� change of δδδδ = change of θθθθ13 !!!

3. At “high energy”, the CP-effect 

goes like cosδ, as pointed out by 

Lipari � cannot measure sign of δ

L=730 km
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Looking for a compromise
We must compromise at “medium”

energy to

1. This means ∆m2
21 (L/4Eν)<<1

& ∆m2
32 (L/4Eν)≈1

2. To gain from the Eµ
3 behavior of 

the NF

3. To guarantee the possibility to 

disentangle δ from θ13

•Eν,MAX � 2 GeV for L=732 km

•Eν,MAX � 8 GeV for L=2900 km

•Eν,MAX � 20 GeV for L=7400 km

L
Eν

≈
4π

2∆m32
2

L=2900 km

Position of first maximum!
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Matter affects L/E scaling
sin2 2θm (D) =

sin2 2θ

sin2 2θ + ±
D

∆m 2
− cos2θ 

 
 
 

2

D Eν( )= 2 2GFneEν ≈ 7.56 ×10−5   eV 2 ρ
gcm−3

 
  

 
  

E
GeV

 
 

 
 

Resonance: D ≈ ∆m2 cos2θ sin2 2θm (D) ≈1

Suppression: D > 2∆m2 cos2θ sin2 2θm (D) < sin2 2θ
Mixing in matter smaller than 
in vacuum

where

For example, for neutrinos:

+ for neutrinos
– for antineutrinos

Effect tends to become “visible” for L > 1000 km

λm = L× sin22θ + ±
D

∆m2 − cos2θ 
 

 
 

2



Tsukuba, May 2001 Bueno, Campanelli, Rubbia CP Violation

Maximal length for L/E scaling
The magnitude of the CP effect (given by J) is known to be unaffected by matter

Our “choice-point” for CP is at the fixed L/Eν,max given by: Eν,max =
2×1.27×∆m2L

π
When the neutrino energy becomes close to the MSW resonance, the effective 
oscillation wavelength increases, hence the CP effect at a fixed distance L 
becomes less visible.

Hence, we gain until the MSW resonance region and then lose

2 2GFne Eν < ∆m 2 cos2θ

L <
π cos2θ

2 ×1.27 × 7.56 ×10−5   eV 2 ρ
gcm−3

 
 
  

 

≈
1.5 ×104 km

ρ
gcm−3

 
 
  

 

≈ 5000km

2 2GFne

2×1.27∆m2L
π < ∆m2cos2θ

J = cosθ13 sinδ sin2θ12 sin2θ13 sin2θ23/8
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Effect of matter on L/E scaling

D ≈ 2∆m2 cos2θ

When 

Eν,max > EMSW,

the oscillation gets 
suppressed

MSW resonance 
position EMSW� 12 GeV
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CP- and T-violation in matter
Scaled ∆T Scaled ∆CP

Experimental observables: for both ∆CP and ∆T, the 
difference between δ=π/2 and δ=-π/2 is suppressed at 
L=7400 km (Eν,MAX= 20 GeV > EMSW)
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Effects of matter on ∆T

vacuum

matter

The cut-off of the scaled T-
violating term in matter for 
L�4000 km destroys L/E 
scaling. It is useless to go above 
this distance for T-and CP-
violation studies

The above considerations have 
nothing to do with the necessity 
of subtracting fake-CP violation 
due to matter ν-ν asymmetry
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Electron charge
In a granular detector (σx � 100 µm) with a magnetic field of about 1T, bending of low-

energy (Ee <� 5 GeV) electrons can be observed before the start of the shower:

Fully simulated 2.5 GeV 
electron in LAr with 1T 
external field

e+

H
ar

d 
br

em
ss

tr
ah

lu
ng
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Energy-baseline considerations
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For CP violation, L/E scaling 
breaks down for L�4000 km due 
to matter effects. The measurement 
is performed measuring the charge 
of muons, and detector efficiency 
is approximately constant over a 
wide energy range

For T-violation, the electron 
charge has to be measured. This is 
only practically conceivable for 
energies <� 5 GeV

→low energies/short baselines 
needed!
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MC simulation for electron charge

For a practical implementation of a magnetized LAr TPC see talk from F.Sergiampietri

Y          z

               

x B

∆x

∆z

Magnetic and electric fields 
are perpendicular to exploit 
the better resolution along 
drift (O(300 µm) vs 

O(3mm) wire pitch)

E

MC simulations of electrons in a 
magnetic field have been 
performed, assuming the following 
magnet parameters:

B field (T)
Charge
confusion (%)

0.2 35

0.5 15

1.0 3

Purities obtained (for 10% 
efficiency) are encouraging, 
but clearly require high fields
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A practical example

In order to prove L/E scaling, and 
explore the physical reach in practical 
examples, we have studied in detail two 
cases:

•L= 732 km, Eµ = 7.5 GeV, 1021 µ decays for 
∆CP and ∆T (also higher flux considered)

•L=2900 km, Eµ = 30 GeV, 2.5*1020 µ decays for 
∆CP only
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Event rates

Assume BG rejection 
factor for electrons 
O(10-3) for 20% 
efficiency

1021 muon decays

10 kton detector

τ→e background: another reason 
to require low energies!

µ+ 

beam

µ-

beam
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L/E scaling
Also the number of oscillated events around the oscillation maximum depends on L/E

Wrong-sign 
electrons

Wrong-sign 
muons

L=2900 km, 
Eµ=30 GeV 

L=732 km, 

Eµ=7.5 GeV

However, for constant 
machine power, 

Nµ*Eµ= const, 

so CP-violating effects 
only depend on L/ Eµ.
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The integral below the maximum 
goes like E3/L2, so it is linear in 
L for a given L/E

δ=π/2 δ=0
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Direct measurement of oscillation

Observed WSL events
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In addition to the MonteCarlo-based fit to the observed spectra, 
information about ∆CP and ∆T can be directly extracted from 
the oscillation probability:
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Measuring CP violation
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The νe→νµ and νe→νµ
oscillation probabilities 
obtained from wrong-sign 
muons.

∆CP= P(νe→νµ)-P(νe→νµ),

Will be different from zero 
due to matter effects, even 
for δ=0

At L=732 km, matter effects are smaller, and large negative 
values of δ can reverse the sign of ∆CP

L=732 km

L=2900 km
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L/Eµ scaling at work
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90% contours in the ∆m2
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plane, obtained translating the 
probability differences into ∆χ2

The sensitivity for the two 
cases is similar, proving the 
validity of the L/Eµ scaling 
at constant machine power.
Actually, the shorter 
distance is even better due 
to the smaller influence of 
matter effects
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Measured probabilities for T-violation
• ∆m2

23=3.5�10-3 eV2

• ∆m2
12=1.�10-4 eV2

• sin22θ13=0.05

• sin22θ23=1.

• sin22θ12=1.

• δ13=π/2

• 1021 µ decays

• 10 kton detector

• 20% e charge eff.
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Measuring ∆T
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The difference in 
probability for wrong-
sign muons and wrong-
sign electrons is a 
direct proof of T-
violation. Matter 
effects are the same, 
and cancel out in the 
difference.

This measurement has 
a 3σ significance for 
δ=±π/2
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Efficiency-purity dependence
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Due to the large 
background from the 
beam, a large purity is 
needed from the 
charge identification. 
However,  charge 
confusion at 1% level 
does not spoil the 
measurement 
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∆T exclusion
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Conclusions
•In neutrino factory experiments, most of the sensitivity to CP-violation will come 
from events close to the first oscillation maximum

•Given the scaling laws for the number of events, for a given L/Eµ and a fixed flux, 
the sensitivity grows linearly with L until L<4000 km

•For fixed machine power, all energy/baseline combinations with same L/Eµ are 
equal. Baselines of �730 km, where existing facilities and experiments will be 
located at the time of the start of a neutrino factory can be used with an intense, low 
energy neutrino beam

•Matter effects are creating fake CP violation, but they are small for baselines 
<1000 km 

•Matter effects can be fully eliminated searching for T-violation

•A detector with electron charge identification capabilities can provide a clean and 
model-independent evidence for a complex phase in the leptonic mixing matrix


