Optimization studies for CP violation

A.Bueno, M.Campanelli, A.Rubbia ETH-Zurich

Neutrino masses and mixings

Les Houches, June 2001

Layout

- •Oscillation probability for complex mixing
- •Fluxes in a Neutrino Factory
- •Scaled probabilities
- •Correlation CP- θ_{13}
- Matter propagation
- •L/E_v scaling
- •Determination of oscillation probabilities
- •Electron charge
- •T-violation
- •Conclusions

Tsukuba, May 2001

Introduction

Optimizing the search for a complex phase in the leptonic mixing matrix far from trivial

•A priori, the effect depends on L and E in a complicated Way (In vacuum, the scaling of the effect with L/E can help an intuitive understanding of the oscillation behavior)

•Measurement precision depends on practical limits on machine power, maximal energy/flux, detector mass

The choice of the baseline is critical: at the time of the Neutrino Factory, there will be already experiments located at a distance of 250 km from JHF and 730 km from CERN and FNAL; if new sites are really needed, due to physics considerations, that would require major new investments

$v_e \rightarrow v_\mu$ oscillation probability

Following the conventional formalism for leptonic mixing, CPviolating effects are observed in appearance transitions involving the first family. Experimentally, $v_{\mu} \rightarrow v_{e}$ is clearly favored.

This probability is composed of three terms:

L/E regimes

Observable quantities

• $\Delta \delta \equiv P(\nu_e \rightarrow \nu_\mu; \delta = \pi/2) - P(\nu_e \rightarrow \nu_\mu; \delta = 0)$

Compares oscillation probabilities as a function of E_{ν} measured with wrong-sign muon event spectra, to MonteCarlo predictions of the spectrum in absence of CP violation

• $\Delta CP(\delta) \equiv P(v_e \rightarrow v_{\mu}; \delta) - P(\overline{v}_e \rightarrow \overline{v}_{\mu}; \delta)$

Compares oscillation probabilities measured using the appearance of v_{μ} and \bar{v}_{μ} , running the storage ring with a beam of stored μ^+ and μ^- , respectively. Matter effects are dominant at large distances

•
$$\Delta T(\delta) \equiv P(v_e \rightarrow v_\mu; \delta) - P(v_\mu \rightarrow v_e; \delta)$$

Compares the appearance of v_{μ} and v_{e} in a beam of stored μ^{+} and μ^{-} . As opposite to the previous case, matter effects are the same, thus cancel out in the difference

•
$$\Delta \overline{T}(\delta) \equiv P(\overline{v}_e \rightarrow \overline{v}_{\mu}; \delta) - P(\overline{v}_{\mu} \rightarrow \overline{v}_e; \delta)$$

Same as previous case, but with antineutrinos. This effect is usually matter-suppressed with respect to the neutrino case.

Measuring ΔT

The comparison of $v_{\mu} \rightarrow v_{e}$ and $v_{e} \rightarrow v_{\mu}$ oscillation probabilities offers a **direct way** to highlight a **complex** component in the mixing matrix, independent of matter and other oscillation parameters.

This measurement is not directly accessible at a Neutrino Factory with a conventional detector due to the large v_e background in the beam. It would add a considerable improvement to the physics reach of a Neutrino Factory

Two methods have been proposed to solve the problem of beam ν_e background :

- Beam polarization (not very effective; see A.Blondel, A.Bueno, M.Campanelli, A.Rubbia, Monterey proceedings)
- Electron charge (discussed later in this talk)

Oscillation probabilities

For a complex mixing matrix (in vacuum)

$\Delta CP = \Delta T =$

Oscillating term only depends on L/E

Neutrino Factory fluxes

P. Lipari, hep-ph/0102046

$$\mu^- \to e^- \overline{\nu}_e \nu_\mu \quad or \quad \mu^+ \to e^+ \nu_e \overline{\nu}_\mu$$

2.5.108 Forward neutrino spectrum E_{μ} =5, 10, 20, 40 GeV $\mu \rightarrow \nu_{P}$ $\begin{bmatrix} cm^{2} & 6 \\ cm^{2} & 6 \\ 10^{21} & \mu \end{bmatrix}^{-1}$ fixed by μ decay kinematics L = 1000 KmOnly scales with energy Integrating: $\mathrm{d}\phi_{
u_{e}}/\mathrm{d}E_{
u}$ $5.0 \cdot 10^{7}$ $\propto E_v^2$ Flux scales as E_{11}^{2}/L^{2} 20 0 10 30 40 E_{ν} (GeV) Total event rate scales as E^{3}_{1}/L^{2} $\frac{dN}{dx} \propto x^2 (1-x) \quad x \equiv E_v / E_\mu$

Bueno, Campanelli, Rubbia CP Violation

Scaled probabilities

CP violation at high energy?

See also P. Lipari, hep-ph/0102046

$$P(v_e \to v_{\mu}) \times E_v^2 / L^2$$

1. The E_v^2 term takes into account that the NF likes to go to high energy \Rightarrow damps the part $\Delta m_{21}^2 (L/4E_v) \approx 1$ 2. At "high energy", i.e. Δm_{21}^2 $(L/4E_v) <<1 & \Delta m_{32}^2 (L/4E_v) <<1$, there is no more oscillation \Rightarrow change of δ = change of θ_{13} !!! 3. At "high energy", the CP-effect goes like cos δ , as pointed out by Lipari \Rightarrow cannot measure sign of δ

$$\sin^{2} 2\theta_{m}(D) = \frac{\sin^{2} 2\theta}{\sin^{2} 2\theta + \left(\pm \frac{D}{\Delta m^{2}} - \cos 2\theta\right)^{2}} + \text{ for neutrinos}$$

- for antineutrinos

where

$$D(E_v) = 2\sqrt{2}G_F n_e E_v \approx 7.56 \times 10^{-5} \quad eV^2 \left(\frac{\rho}{g cm^{-3}}\right) \left(\frac{E}{G eV}\right)$$

For example, for neutrinos:

Resonance: $D \approx \Delta m^2 \cos 2\theta \implies \sin^2 2\theta_m(D) \approx 1$

Suppression: $D > 2\Delta m^2 \cos 2\theta \implies \sin^2 2\theta_m(D) < \sin^2 2\theta$

Mixing in matter smaller than in vacuum

 λ

 $\lambda_m = L \times \sqrt{\sin^2 2\theta} + \left(\pm \frac{D}{\Delta m^2} - \cos 2\theta\right)^2$

Effect tends to become "visible" for L > 1000 km

Tsukuba, May 2001

Bueno, Campanelli, Rubbia CP Violation

Name and a set of the CP effect (given by J) is known to be unaffected by matter

$$J = \cos\theta_{13} \sin\delta \sin2\theta_{12} \sin2\theta_{13} \sin2\theta_{23}/8$$
Our "choice-point" for CP is at the fixed L/E_{v,max} given by: $E_{v,max} = \frac{2 \times 1.27 \times \Delta m^2 L}{\pi}$

0

1 .

 π

When the neutrino energy becomes close to the MSW resonance, the effective oscillation wavelength increases, hence the CP effect at a fixed distance L becomes less visible.

Hence, we gain until the MSW resonance region and then lose

$$2\sqrt{2}G_F n_e E_v < \Delta m^2 \cos 2\theta \quad \Longrightarrow 2\sqrt{2}G_F n_e \frac{2 \times 1.27\Delta m^2 L}{\pi} < \Delta m^2 \cos 2\theta$$

$$L < \frac{\pi \cos 2\theta}{2 \times 1.27 \times 7.56 \times 10^{-5} \ eV^2 \left(\frac{\rho}{g cm^{-3}}\right)} \approx \frac{1.5 \times 10^4 \ km}{\left(\frac{\rho}{g cm^{-3}}\right)} \approx 5000 \ km$$

•

CP- and T-violation in matter

Experimental observables: for both Δ CP and Δ T, the difference between $\delta = \pi/2$ and $\delta = -\pi/2$ is suppressed at L=7400 km (E_{v,MAX}= 20 GeV > E_{MSW})

Effects of matter on Δ

The cut-off of the scaled Tviolating term in matter for L 4000 km destroys L/E scaling. It is useless to go above this distance for T-and CPviolation studies

The above considerations have nothing to do with the necessity of subtracting fake-CP violation due to matter $v-\overline{v}$ asymmetry

Electron charge

In a granular detector (σ_x 100 µm) with a magnetic field of about 1T, bending of lowenergy ($E_e < 5$ GeV) electrons can be observed before the start of the shower:

Bueno, Campanelli, Rubbia CP Violation

Energy-baseline considerations

For CP violation, L/E scaling breaks down for L 4000 km due to matter effects. The measurement is performed measuring the charge of muons, and detector efficiency is approximately constant over a wide energy range

For T-violation, the electron charge has to be measured. This is only practically conceivable for energies < 5 GeV

→low energies/short baselines needed!

MC simulation for electron charge

MC simulations of electrons in a magnetic field have been performed, assuming the following magnet parameters:

Parameter	
Argon volume	$8 \times 8 \times 16m^3$
Argon mass	$1.4 \mathrm{kton}$
Magnetic field	1.0 T
Current	2000 A
Conductor length	$150 \mathrm{km}$
Resistance	1Ω
Dissipated power	$4 \mathrm{MW}$
Iron mass	$5 \mathrm{kton}$

Purities obtained (for 10% efficiency) are encouraging, but clearly require high fields

B field (T)	Charge confusion (%)
0.2	35
0.5	15
1.0	3

For a practical implementation of a magnetized LAr TPC see talk from F.Sergiampietri

Bueno, Campanelli, Rubbia CP Violation

A practical example

In order to prove L/E scaling, and explore the physical reach in practical examples, we have studied in detail two cases:

•L= 732 km, $E_{\mu} = 7.5$ GeV, $10^{21} \mu$ decays for Δ CP and Δ T (also higher flux considered) •L=2900 km, $E_{\mu} = 30$ GeV, $2.5*10^{20} \mu$ decays for Δ CP only

Event rates

10²¹ muon decays

10 kton detector

Assume BG rejection factor for electrons $O(10^{-3})$ for 20% efficiency

 $\tau \rightarrow e$ background: another reason to require low energies!

		$E_{\mu} = 7.5 \text{ GeV}$	$E_{\mu} = 30 \text{ GeV}$
	Process	L = 732 km	L = 2900 km
		$10^{21} \mu^{-}$	$2.5 \times 10^{20} \ \mu^-$
	$\nu_{\mu} CC$	41690	36050
Non-oscillated	$ u_{\mu} \text{ NC} $	10700	10300
rates	$\bar{\nu}_e CC$	14520	13835
	$\bar{\nu}_e \text{ NC}$	4266	4975
Oscillated	$\bar{\nu}_e \rightsquigarrow \bar{\nu}_\mu \text{ CC}$	88	50
events ($\delta = \pi/2$)	$\nu_{\mu} \rightsquigarrow \nu_{e} \text{ CC}$	258	238
Oscillated	$\bar{\nu}_e \rightsquigarrow \bar{\nu}_\mu \text{ CC}$	100	54
events $(\delta = 0)$	$\nu_{\mu} \rightsquigarrow \nu_{e} \text{ CC}$	385	333
Oscillated	$\bar{\nu}_e \rightsquigarrow \bar{\bar{\nu}}_\mu \operatorname{CC}$	100	55
events ($\delta = -\pi/2$)	$\nu_{\mu} \rightsquigarrow \nu_{e} \text{ CC}$	376	330

μ⁻ beam

Non-oscillated rates Oscillated events ($\delta = \pi/2$) Oscillated events ($\delta = 0$) Oscillated	Process $\overline{\nu}_{\mu} \text{ CC}$ $\overline{\nu}_{\mu} \text{ NC}$ $\nu_{e} \text{ CC}$ $\nu_{e} \text{ NC}$ $\overline{\nu}_{e} \rightarrow \nu_{\mu} \text{ CC}$ $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e} \text{ CC}$ $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e} \text{ CC}$ $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e} \text{ CC}$ $\overline{\nu}_{e} \rightarrow \nu_{\mu} \text{ CC}$	$E_{\mu} = 7.5 \text{ GeV}$ $L = 732 \text{ km}$ $10^{21} \mu^{+}$ 16570 5096 37570 9143 445 86 438 86 289	$\begin{array}{l} E_{\mu} = 30 \ {\rm GeV} \\ L = 2900 \ {\rm km} \\ 2.5 \times 10^{20} \ \mu^+ \\ \hline 15962 \\ 5600 \\ 32100 \\ 9175 \\ \hline 397 \\ 46 \\ \hline 387 \\ 45 \\ \hline 277 \\ \end{array}$	μ+ beam
events ($\delta = -\pi/2$)	$ \overline{\nu}_e \rightsquigarrow \overline{\nu}_\mu \operatorname{CC} $ $ \overline{\nu}_\mu \rightsquigarrow \overline{\nu}_e \operatorname{CC} $	77	42	

L/E scaling

Also the number of oscillated events around the oscillation maximum depends on L/E

Direct measurement of oscillation

In addition to the MonteCarlo-based fit to the observed spectra, information about ΔCP and ΔT can be directly extracted from the oscillation probability:

Measuring CP violation

The $v_e \rightarrow v_\mu$ and $\bar{v}_e \rightarrow \bar{v}_\mu$ oscillation probabilities obtained from wrong-sign muons.

$$\Delta CP = P(\nu_e \rightarrow \nu_\mu) - P(\bar{\nu}_e \rightarrow \bar{\nu}_\mu),$$

Will be different from zero due to matter effects, even for $\delta=0$

At L=732 km, matter effects are smaller, and large negative values of δ can reverse the sign of Δ CP

L/E_{μ} scaling at work

90% contours in the $\Delta m_{12}^2 - \delta$ plane, obtained translating the probability differences into $\Delta \chi^2$

The sensitivity for the two cases is similar, proving the validity of the L/E_{μ} scaling at constant machine power. Actually, the shorter distance is even better due to the smaller influence of matter effects

Measured probabilities for T-violation

- $\Delta m_{23}^2 = 3.5 \times 10^{-3} \text{ eV}^2$
- $\Delta m_{12}^2 = 1. \times 10^{-4} \text{ eV}^2$
- $\sin^2 2\theta_{13} = 0.05$
- $\sin^2 2\theta_{23} = 1$.
- $\sin^2 2\theta_{12} = 1$.
- $\delta_{13} = \pi/2$
- $10^{21} \mu$ decays
- 10 kton detector
- 20% e charge eff.

Direct comparison of oscillation probabilities for neutrinos and antineutrinos E_{μ} =5 GeV, L=732 km

Measuring ΔT

The difference in probability for wrongsign muons and wrongsign electrons is a direct proof of Tviolation. Matter effects are the same, and cancel out in the difference.

This measurement has a 3σ significance for $\delta = \pm \pi/2$

Efficiency-purity dependence

Due to the large background from the beam, a large purity is needed from the charge identification. However, charge confusion at 1% level does not spoil the measurement

ΔT exclusion

Conclusions

•In neutrino factory experiments, most of the sensitivity to CP-violation will come from events close to the first oscillation maximum

•Given the scaling laws for the number of events, for a given L/E_{μ} and a fixed flux, the sensitivity grows linearly with L until L<4000 km

•For fixed machine power, all energy/baseline combinations with same L/E_{μ} are equal. Baselines of 730 km, where existing facilities and experiments will be located at the time of the start of a neutrino factory can be used with an intense, low energy neutrino beam

•Matter effects are creating fake CP violation, but they are small for baselines <1000 km

•Matter effects can be fully eliminated searching for T-violation

•A detector with electron charge identification capabilities can provide a clean and model-independent evidence for a complex phase in the leptonic mixing matrix