The European Long Baseline Program

Les Houches, 21 June 2001 Dario Autiero CERN/EP

CERN to Gran Sasso Neutrino Beam

Many thanks to A. Rubbia for providing material about ICARUS

The atmospheric neutrino results from SuperKamiokande

Super-Kamiokande Combined Fit $\gamma_{\mu} \leftrightarrow \nu_{\tau}$ • Fully Contained • Partial Contained • Upward Going μ $\chi^2_{min} = 142.1/152$ d.o.f. $\sin^2 2\theta = 1.0$ $\Delta m^2 = 2.5 \times 10^{-3} \text{ eV}^2$

There is a clear dependence on L/E but the oscillation behavior (observation of a complete oscillation) is not demonstrated

 $\nu_{\mu} \rightarrow \nu_{e}$ oscillations are excluded also by CHOOZ $\nu_{\mu} \rightarrow \nu_{s}$ oscillations are already excluded at 99% CL

Motivations

- Study neutrino oscillations at $\Delta m^2 > 10^{-3} \text{ eV}^2$ in the region indicated by SuperKamiokande
- Establish unambiguously and definitively that the anomaly is due to $v_{\mu} \rightarrow v_{\tau}$ oscillations by observing v_{τ} appearance in a beam containing negligible v_{τ} at production
- Search for $v_{\mu} \rightarrow v_{e}$ oscillations with higher sensitivity than CHOOZ **Focussing on** v_{τ} **appearance:**

high energy beam optimized for τ appearance,
clear signature, almost background free experiments,
no need for near detectors,
730 Km baseline from CERN to Gran Sasso

Detection of the $\nu_{\mu} \rightarrow \nu_{\tau} \rightarrow \tau^{-}$ signal and background rejection

OPERA: Observation of the <u>decay "signature"</u> at <u>microscopic scale</u> (à la CHORUS)

> "nuclear" photographic emulsion (~ 1µm granularity)

The Experimental Program

- **CNGS:** Approved at the end of 1999, civil engineering in progress, first neutrinos expected by 2005
- **OPERA:** Approved in February 2001 (CNGS1), observation of the τ^{-} decay kink in a high resolution detector consisting of emulsion films and lead plates for a mass of 2 Ktons, same technique as the one used by DONUT for the first direct observation of the v_{τ} charged current interactions (2000)
- ICARUS: Not yet approved. Liquid Argon TPC, kinematic technique a` la NOMAD, total detector mass of about 5 Ktons, 600 Ton demonstration module being completed, first results

The two experiments are a natural continuation of the CHORUS and NOMAD short baseline experiments at CERN but:

 The conflicting requirements of large scale and at the same
 time very good space/energy resolution represent a big challenge solved by many years of R&D

The CERN side

Status of the civil engineering work

Excavation is going on smoothly, very good ground conditions so far ...

CNGS beam characteristics

Nominal v beam

v_{μ} (m ⁻² /pot)	7.78x10 ⁻⁹	$ \Rightarrow$
$\nu_{\mu}CC$ / pot / kton	5.85x10 ⁻¹⁷	
< E > _v (GeV)	17	
$(v_{e} + \overline{v_{e}}) / v_{\mu}$	0.87 %	
$\overline{ u}_{\mu}$ / $ u_{\mu}$	2.1 %	
v_{τ} prompt	negligible	

Shared SPS operation 200 days/year 4.5x10¹⁹ pot / year Interactions with 1.8 kton target x 5 years

- ~ 30000 v NC+CC
- ~ 140 v_{τ} CC (@full mixing, $\Delta m^2 = 2.5 \times 10^{-3} \, eV^2$)

The beam at Gran Sasso

Beam transverse dimensions at Gran Sasso given by $\pi^+ \rightarrow \mu^+ \nu_{\mu}$ kinematics: max $p_T = 30$ MeV/c $\theta_{\nu\mu} = 0.03/E_{\nu\mu}$ (GeV)

 ν_{τ}

The OPERA experiment

Brick (56 Pb/Emulsions. "cells")

The experimental technique

- **Emulsion Cloud Chamber (ECC)** (emulsions for tracking, passive material as target)
 - Basic technique works
 - charmed "X-particle" first observed in cosmic rays (1971)
 - DONUT/FNAL beam-dump experiment: v_{τ} events observed

- $\Delta m^2 = (1.6 4) \times 10^{-3} \text{ eV}^2$ (SuperK) $\rightarrow M_{\text{target}} \sim 2 \text{ kton}$ of "compact" ECC (baseline)
 - large detector \rightarrow sensitivity, complexity
 - modular structure ("bricks"): basic performance is preserved
- **Ongoing developments**, required by the large vertex detector mass:
 - industrially produced emulsion films
 - automatic scanning microscopes with ultra high-speed

Experience with emulsions and/or v_{τ} searches : E531, CHORUS, NOMAD and DONUT

Structure	DONUT =	OPERA
Material	DONUT Fe \rightarrow	OPERA Pb better for physics analysis
		(Fe density : too large or too small)

v_{τ} detection by Emulsion-Counter Hybrid Experiments

	Emulsion gel	Track density In emulsion	Scan area
CHORUS	400 liter	$10^4 / \text{cm}^2$	$6 \times 10^4 \text{ cm}^2$
DONUT	50 liter	$10^{5} / cm^{2}$	$2 \mathrm{x} 10^4 \mathrm{cm}^2$
OPERA	10 ⁴ liter diluted 5000 liter equivalent	10^{2} /cm ²	$5 \times 10^6 \text{ cm}^2$
10 x C	HORUS	100 x CH $UTS \rightarrow S-U$ $\# \text{ of } S-UT$	ORUS TS : x 20 CS : x 5
Industrial	emulsion films	Scannin	ig speed
(as f	or X-rays)	x 10 every	few years

Microscope for automatic image analysis

Computer controlled Multidisciplinary applications: e.g. biophysics

Progress in automatic emulsion scanning

New tools always made a difference !

From B.Kurtén, *Our earliest ancestors* Columbia University Press (1993)

Aim for OPERA ~20 cm²/hour/system

- Road map : speed x 10 every few years
- At present : Ultra Track Selector $\sim 1 \text{ cm}^2/\text{ h}/\text{ s}$

R&D in Japan and in Europe

The Bricks are arranged into walls ...

Muon identification

+ charge and momentum

***** Reject charm background

∠ Tag and analyse τ → μ candidates

• Fe Walls

7.1 λ_{int} instrumented with **RPC**

identify muons by range shower energy measurement (with p_{μ} gives E_{ν} spectrum)

Drift Tube trackers

$$\frac{\sigma_p}{p} < 25\% \quad \text{for } p < 25 \text{GeV} / c$$

Wrong charge < 0.5 %

Dipolar spectrometer magnet (weight: ~ 950 ton) r nu IRON TOP. **B= 1.55 Tesla** SLABS -IRON BASE COL ANTISHRINKAGE CONCRETE

Prototype of magnet section being assembled at Frascati

Expected background (5 years of data taking)

		$\tau \rightarrow e$	$ au ightarrow \mu$	au ightarrow h	Total
Long decays	Charm production ν _e CC and π ⁰ Large μ scattering Hadron reinteractions Total	0.15 0.01 - - 0.16	0.03 - 0.10 - 0.13	0.15 - - 0.10 0.25	0.33 0.01 0.10 0.10 0.54
Short decays	Charm production ν _e CC and π ^θ Total	0.03 «0.01 0.03	-	-	0.03 «0.01 0.03
	Total	0.19	0.13	0.25	0.57

Sensitivity to $v_{\mu} \rightarrow v_{\tau}$ oscillations

Summary of τ detection efficiencies

(in % and including BR)

Decay mode	DIS long	QE long	DIS short	Overall
$\tau \rightarrow e$	3.0	2.6	1.3	3.7
$\tau \rightarrow \mu$	2.7	2.8	-	2.7
$\tau \rightarrow h$	2.2	2.8	-	2.3
Total	8.0	8.3	1.3	8. 7

Expected v_{τ} events (2.25×10²⁰ pot, 1.8KTon, accounting for removed bricks)

$\Delta m^2(10^3 \,\mathrm{eV}^2)$

τ decay	16	25	4.0	bg
е	1.9	4.7	11.8	0.19
μ	1.5	3.5	8.8	0.13
h	1.3	3.0	7.6	0.25
Total	4.7	11.2	28.2	0.57

Events $\propto (\Delta m^2)^2$

After 5 years data taking

 $\Delta m^2 = 1.2 \times 10^{-3} \text{ eV}^2 \text{ at full mixing}$ $\sin^2(2\theta) = 6.0 \times 10^{-3} \text{ at large } \Delta m^2$

Statistical significance for discovery

Probability of 4σ significance

- Simulate a large number of experiments with oscillation parameters generated according to the SuperK probability distribution
- \bullet $N^{}_{4\sigma}$ events required for a discovery at 4σ
- Evaluate fraction $P_{4\sigma}$ of experiments observing $\[mathbb{P}\] N_{4\sigma}$ events

years	$P_{3\sigma}$	$P_{4\sigma}$
3	94%	80%
5	97%	92%

Determination of Δm^2

(mixing constrained by SuperK)

<u>90 % CL limits</u> *	$\Delta m^2 (10^{-3} \mathrm{eV}^2)$			
	1.5	3.2	5.0	
Upper limit	2.1	3.8	5.6	
Lower limit	0.8	2.6	4.3	
(U - L) / True	41 %	19 %	12 %	

* assuming the observation of a number of events corresponding to those expected for the given Δm^2

The ICARUS experiment

C.R. shower from 3 ton prototype

The ICARUS Liquid Ar Time Projection Chamber

• Event reconstruction in 3D with measurement of the primary ionization

- 1. drift time
- 2. induction wires
- 3. collection wires

•Space resolution around 1 mm

•Maximum drift length in the Liq. Ar 1.5 m in the 600 ton module (requiring < 0.1 ppb O₂ equiv. impurities)

•Calorimetric energy resolution:

$$\frac{\frac{\sigma(E)}{E} \approx \frac{0.03}{\sqrt{E}} (Em.)}{\frac{\sigma(E)}{E} \approx \frac{0.12}{\sqrt{E}} (Hadr.)}$$

Focussing optics.

The ICARUS liquid Ar Image TPC

An electronic Bubble Chamber (BC)

(as BC)

- Large sensitive volume
- Detector = Target (as BC)
- High spatial granularity (as BC)
- Energy measurement (as BC)
- High energy resolution
- Specific ionisation (dE/dx) measurement
- dE/dx vs. range for particle identification
- Continuous sensitivity
- Self triggering capability

For physics : multi kton

proton decay atmospheric v long baseline v oscillation solar v

A v interaction in the 50 liters test TPC

The ICARUS 600 Ton module

(under construction, first results with half module)

Current T600 status

- Total run duration in Pavia 3 months (100 days)
 - Vacuum (including leak detection)
 - $\sqrt{\text{Day 11 to 15}}$ Pre-cooling
 - $\sqrt{16}$ Day 16 to 20 Cooling
 - $\sqrt{}$ Day 21 to 30

 $\sqrt{10}$ Day 1 to 10

 $\sqrt{10}$ Day 31 to 45 Liquid recirculation

Filling

- Complete detector start-up
 - Data taking with horizontal tracks ⇒ "*Big Track*"

Data taking with vertical tracks

- Day 66 to 70 $\,$

 $\sqrt{}$ Day 46 to 55

 $\sqrt{\text{Day 56 to 65}}$

- Day 71 to 75
- Day 76 to 90
- Day 91 to 93
- Day 94 to 100

We are here!

Data taking with liquid recirculation on Data taking with 1 kV / cm drift field

Data taking with internal trigger only

Data taking with DEDALUS triggers

ICARUS 5kton

LIQUID ARGON

The T600 is a milestone towards future evolutions. In order not be statistically limited a multi-Kton detector is needed for the CNGS. This could come naturally from a cloning strategy of the T600.

CNGS events in 5 kton, 4 years running

 $\theta_{23} = 45^\circ, \theta_{13} = 7^\circ$ \leftarrow CHOOZ upper limit

 $\nu_{\mu} \rightarrow \nu_{\tau} \qquad \nu_{\mu} \rightarrow \nu_{e}$

	$20 \text{ kton} \times \text{year (4 years running)}$					
			$\Delta m_{23}^2 \ ({\rm eV}^2)$			
	No osci	1×10^{-3}	$3.5 imes10^{-3}$	5×10^{-3}		
$-\nu_{\mu}$ CC	54300	53820	49330	44910		
$-\bar{ u_{\mu}}$ CC	1090	1088	1070	1057		
$\nu_e { m CC}$	437	437	437	436		
$\bar{\nu_e}$ CC	29	29	29	29		
ν NC		1	7550			
$\bar{\nu}$ NC			410			
$\nu_{\mu} \rightarrow \nu_{c} \ \mathrm{CC}$	-	7	74	143		
$\nu_{\mu} \rightarrow \nu_{\tau} \ { m CC}$	-	52	620	1250		
$\bar{\nu_{\mu}} \rightarrow \bar{\nu_{e}} \ { m CC}$	-	< 1	< 1	1		
$\bar{\nu_{\mu}} \rightarrow \bar{\nu_{\tau}} CC$	-	< 1	6	13		

$\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations (I)

- Analysis of the electron sample
 - Exploit the small intrinsic v_e contamination of the beam (0.8% of v_{μ} CC)
 - Exploit the unique e/π^0 separation

$$\begin{array}{c} \mathbf{v}_{\mu} \rightarrow \mathbf{v}_{\tau} \\ \mathbf{v}_{\tau} + \mathbf{N} \rightarrow \tau + \mathbf{jet}; \tau \rightarrow e \nu \nu \\ \text{Charged current (CC)} \\ \text{Br} \sim 18\% \end{array}$$

$$\Delta m^{2} = 3.5 \times 10^{-3} e V^{2} \Rightarrow 110 \ events \\ \hline \mathbf{M} = \mathbf{M} + \mathbf{N} \rightarrow \mathbf{e} + \mathbf{jet} \\ \hline \mathbf{M} = \mathbf{M} + \mathbf{N} - \mathbf{e} + \mathbf{jet} \\ \hline \mathbf{M} = \mathbf{M} + \mathbf{M} - \mathbf{e} + \mathbf{jet} \\ \hline \mathbf{M} = \mathbf{M} + \mathbf{M} - \mathbf{e} + \mathbf{jet} \\ \hline \mathbf{M} = \mathbf{M} + \mathbf{M} - \mathbf{e} + \mathbf{jet} \\ \hline \mathbf{M} = \mathbf{M} + \mathbf{M} - \mathbf{e} + \mathbf{jet} \\ \hline \mathbf{M} = \mathbf{M} + \mathbf{M} - \mathbf{e} + \mathbf{jet} \\ \hline \mathbf{M} = \mathbf{M} + \mathbf{M} - \mathbf{e} + \mathbf{jet} \\ \hline \mathbf{M} = \mathbf{M} + \mathbf{M} - \mathbf{e} + \mathbf{jet} \\ \hline \mathbf{M} = \mathbf{M} + \mathbf{M} + \mathbf{M} + \mathbf{M} + \mathbf{M} \\ \hline \mathbf{M} = \mathbf{M} + \mathbf{M} + \mathbf{M} \\ \hline \mathbf{M} = \mathbf{M} + \mathbf{M} \\ \hline \mathbf{M} = \mathbf{M} + \mathbf{M} \\ \hline \mathbf{M} = \mathbf{M} \\ \hline \mathbf{M} \\ \hline \mathbf{M} = \mathbf{M} \\ \hline \mathbf{M} \\ \mathbf{M} \\ \hline \mathbf{M} \\ \mathbf{M} \\ \hline \mathbf{M} \\ \mathbf{M} \\$$

 $v_{\mu} \rightarrow v_{\tau}$ oscillations (II)

 Reconstructed visible energy spectrum of electron events clearly evidences excess from oscillations into tau neutrino

Cuts	ν_{τ} Eff.	ν_e	$\bar{\nu}_e$	$\nu_{\tau} CC$	$\nu_{\tau} { m CC}$	$ u_{ au} ext{ CC} $	$-\nu_{\tau} \ { m CC}$
	(%)	CC	CC	$\Delta m^2 =$	$\Delta m^2 =$	$\Delta m^2 =$	$\Delta m^2 =$
				10^{-3} eV^2	$2.8 \times 10^{-3} \text{ eV}^2$	$3.5 \times 10^{-3} \text{ eV}^2$	10^{-2} eV^2
Initial	100	437	29	9.3	71	111	779
Fiducial volume	88	383	25	8.2	64	97	686
One candidate with							
momentum $> 1 \text{ GeV}$	72	365	25	6.7	50	80	561
$E_{vis} < 18 { m ~GeV}$	67	64	5	6.2	46	75	522

$\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations (III)

- Kinematical selection in order to enhance S/B ratio
- Can be tuned "a posteriori" depending on the actual Δm^2
- For example, with cuts listed below, reduction of background by factor 100 for a signal efficiency 33%

Cuts	ν_{τ} Eff.	ν_e	$\bar{\nu}_e$	$-\nu_{\tau} \ \mathrm{CC}$	$\nu_{\tau} { m CC}$	$\overline{\nu_{\tau} \text{ CC}}$	$-\nu_{\tau} \ { m CC}$
	(%)	CC	CC	$\Delta m^2 =$	$\Delta m^2 =$	$\Delta m^2 =$	$\Delta m^2 =$
				$10^{-3} \mathrm{eV}^2$	$2.8 \times 10^{-3} \text{ eV}^2$	$3.5 \times 10^{-3} \text{ eV}^2$	10^{-2} eV^2
Initial	100	437	29	9.3	71	111	779
Fiducial volume	88	383	25	8.2	64	97	686
One candidate with							
momentum $> 1 \text{ GeV}$	72	365	25	6.7	50	80	561
$E_{vis} < 18 { m ~GeV}$	67	64	õ	6.2	46	75	522
$P_T^e < 0.9 { m ~GeV}$	54	31	3	5.0	38	60	421
$P_T^{lep} > 0.3 { m ~GeV}$	51	29	2	4.7	35	56	397
$P_T^{miss} > 0.6 \mathrm{GeV}$	33	4	0.4	3.1	23	37	257

Search for $\theta_{13} \neq 0$

 $\Delta m_{32}^2 = 3.5 \times 10^{-3} \text{ eV}^2; \sin^2 2\theta_{23} = 1$

ICARUS

	4 years								
	Cuts: F	iducial,	$E_e > 1 { m Ge}$	$V, E_{vis} < 2$	$20 \mathrm{GeV}$				
	$\Delta m_{23}^2 = 3.5 \times 10^{-3} \text{ eV}^2, \ \theta_{23} = 45^o$								
$ heta_{13}$	$\sin^2 2 heta_{13}$	$\nu_e \text{ CC}$	$ u_{\mu} \rightarrow \nu_{\tau} $	$\nu_{\mu} \rightarrow \nu_{e}$	Total	Statistical			
(degrees)			$\tau \to e$			significance			
9	0.095	79	74	84	237	6.8σ			
8	0.076	79	75	67	221	5.4σ			
7	0.058	79	76	51	206	4.1σ			
5	0.030	79	77	26	182	2.1σ			
3	0.011	79	77	10	166	0.8σ			
				1					
$P(v_{\mu} \rightarrow v_{\tau}) = \cos^4 \theta_{13} \sin^2 2\theta_{23} \Delta^2_{32} \qquad \qquad$									
,			P(V	$V_{\mu} \rightarrow V_{e}) =$	- SIII 20	$_{13}$ SIII $\mathcal{O}_{23}\Delta$ 32			
$\Delta_{23}^2 = \sin^2$	$\Delta_{23}^2 = \sin^2(1.27\Delta_m_{23}^2 \frac{L}{E})$								

Sensitivity to θ_{13} in three family-mixing

4 years @ CNGS

- Estimated sensitivity to v_{μ} $\rightarrow v_{e}$ oscillations <u>in</u> <u>presence of $v_{\mu} \rightarrow v_{\tau}$ </u> (three family mixing)
- Factor 5 improvement on $\sin^2 2\theta_{13}$ at $\Delta m^2 = 3 \times 10^{-3}$ eV^2
- Almost two-orders of magnitude improvement over existing limit at high Δm^2

Conclusions

- The European long baseline program has the unique feature of continuing the study of neutrino oscillations in the atmospheric neutrinos region by looking directly for the appearance of v_{τ} providing an unambiguous proof of $v_{\mu} \rightarrow v_{\tau}$ oscillations.
- $v_{\mu} \rightarrow v_{e}$ oscillations must also be studied to provide a more precise determination of θ_{13} important for the future neutrino factories
- The European program is clearly complementary to the other long baseline experiments based on v_{μ} disappearance (K2K,MINOS,JHF)
- The excavation work for the CNGS beam is on schedule
- The OPERA experiment was approved at the beginning of 2001 and it is now starting the detector construction phase
- There are very encouraging results from the ICARUS T600 module which will hopefully evolve in a multi Kton detector able to exploit at best also the CNGS beam