Super-Kamiokande

Y.Totsuka Kamioka

- Introduction
- Contained events and upward muons
- Updated results
 - Oscillation analysis with a 3D flux
 - Multi-ring events
 - π⁰/μ ratio
 - ν₃ decay
 - Search for τ leptons
 - $\nu_{\mu} \rightarrow \nu_{s}$
- Conclusion

Super-Kamiokande collaboration

S. Fukuda¹, Y. Fukuda¹, M. Ishitsuka¹, Y. Itow¹, T. Kajita¹, J. Kameda¹, K. Kaneyuki¹, K. Kobayashi¹, Y. Koshio¹,

M. Miura¹, S. Moriyama¹, M. Nakahata¹, S. Nakayama¹, A. Okada¹, N. Sakurai¹, M. Shiozawa¹, Y. Suzuki¹

H. Takeuchi¹, Y. Takeuchi¹, T. Toshito¹, Y. Totsuka¹, S. Yamada¹, S. Desai², M. Earl², E. Kearns², M.D. Messier²,

K. Scholberg^{2,*}, J.L. Stone², L.R. Sulak², C.W. Walter², M. Goldhaber³, T. Barszczak⁴, D. Casper⁴, W. Gajewski⁴, W.R. Kropp⁴, S. Mine⁴, D.W. Liu⁴, L.R. Price⁴, M.B. Smy⁴, H.W. Sobel⁴, M.R. Vagins⁴, K.S. Ganezer⁵,

W.E. Keig⁵, R.W. Ellsworth⁶, S. Tasaka⁷, A. Kibayashi⁸, J.G. Learned⁸, S. Matsuno⁸, D. Takemori⁸, Y. Hayato⁹, T. Ishii⁹, T. Kobayashi⁹, K. Nakamura⁹, Y. Obayashi⁹, Y. Oyama⁹, A. Sakai⁹, M. Sakuda⁹, M. Kohama¹⁰,

A.T. Suzuki¹⁰, T. Inagaki¹¹, T. Nakaya¹¹, K. Nishikawa¹¹, T.J. Haines^{12,4}, E. Blaufuss^{13,14}S. Dazeley¹³, K.B. Lee^{13,†}, R. Svoboda¹³, J.A. Goodman¹⁴, G. Guillian¹⁴, G.W. Sullivan¹⁴, D. Turcan¹⁴, A. Habig¹⁵,

J. Hill¹⁶, C.K. Jung¹⁶, K. Martens^{16,†}, M. Malek¹⁶, C. Mauger¹⁶, C. McGrew¹⁶, E. Sharkey¹⁶, B. Viren¹⁶,

C. Yanagisawa¹⁶, C. Mitsuda¹⁷, K. Miyano¹⁷, C. Saji¹⁷, T. Shibata¹⁷, Y. Kajiyama¹⁸, Y. Nagashima¹⁸, K. Nitta¹⁸,

M. Takita¹⁸, M. Yoshida¹⁸, H.I. Kim¹⁹, S.B. Kim¹⁹, J. Yoo¹⁹, H. Okazawa²⁰, T. Ishizuka²¹, M. Etoh²², Y. Gando²², T. Hasegawa²², K. Inoue²², K. Ishihara²², T. Maruyama²², J. Shirai²², A. Suzuki²², M. Koshiba²³, Y. Hatakeyama²⁴, Y. Ichikawa²⁴, M. Koike²⁴, K. Nishijima²⁴, H. Fujiyasu²⁵, H. Ishino²⁵, M. Morii²⁵

Y. Watanabe²⁵, U. Golebiewska²⁶, D. Kielczewska^{26,4}, S.C. Boyd²⁷, A.L. Stachyra²⁷, R.J. Wilkes²⁷, K.K. Young^{27,§}

¹ Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582, Japan

Department of Physics, Boston University, Boston, MA 02215, USA

³ Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA

⁴ Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697-4575, USA

Department of Physics, California State University, Dominguez Hills, Carson, CA 90747, USA

Department of Physics, George Mason University, Fairfax, VA 22030, USA

Department of Physics, Gifu University, Gifu, Gifu 501-1193, Japan

⁸ Department of Physics and Astronomy, University of Hawaii, Honolulu, HI 96822, USA

⁹ Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan

¹⁰ Department of Physics, Kobe University, Kobe, Hyogo 657-8501, Japan ¹¹ Department of Physics, Kyoto University, Kyoto 606-8502, Japan

¹² Physics Division, P-23, Los Alamos National Laboratory, Los Alamos, NM 87544, USA

¹³ Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA

14 Department of Physics, University of Maryland, College Park, MD 20742, USA

¹⁵ Department of Physics, University of Minnesota Duluth, MN 55812-2496, USA

¹⁶ Department of Physics and Astronomy, State University of New York, Stony Brook, NY 11794-3800, USA

Department of Physics, Niigata University, Niigata, Niigata 950-2181, Japan

¹⁸ Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan

¹⁹ Department of Physics, Seoul National University, Seoul 151-742, Korea

²⁰ International and Cultural Studies, Shizuoka Seika College, Yaizu, Shizuoka, 425-8611, Japan

²¹ Department of Systems Engineering, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan

Research Center for Neutrino Science, Tohoku University, Sendai, Miyagi 980-8578, Japan
 ²³ The University of Tokyo, Tokyo 113-0033, Japan

²⁴ Department of Physics, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan

²⁵ Department of Physics, Tokyo Institute for Technology, Meguro, Tokyo 152-8551, Japan ²⁶ Institute of Experimental Physics, Warsaw University, 00,681 Warsaw, Poland

Institute of Experimental Physics, Warsaw University, 00-681 Warsaw, Poland

²⁷ Department of Physics, University of Washington, Seattle, WA 98195-1560, USA

Super-Kamiokande detector

50,000 ton water Cherenkov detector (22.5 kton fiducial volume)

1000m underground (2700 m.w.e.)

11,146 20-inch PMTs for inner detector

1,885 8-inch PMTs for outer detector

Atmospheric neutrinos

Atmospheric neutrino spectrum

 E_{ν} (GeV)

Primary cosmic ray flux

Figure 2: Fits to the AMS and BESS data (Energy per particle)

From P.Lipari

Bartol and Honda fluxes

Zenith angle distribution(1D)

Calculated zenith angle distribution

Upward / downward = 1 (within a few %)

Up/Down asymmetry for neutrino oscillations

3D calculation by G.Battistoni et al.

How to detect atmospheric neutrinos

Initial neutrino energy spectrum

Contained event analysis

Fully contained event summary				
		(1289.4 d (79.3	3 kt . y))	
Sub-GeV (Fully	Contained)		
$E_{vis} < 1.33 \text{GeV}, P_e > 100 \text{MeV}, P_{\mu} > 200 \text{MeV}$				
	Data	MC(Honda flux)		
1ring e-like	2864	2667.6	-	
μ-like	2788	4072.8	_	
Multi ring	2159	2585.1		
Total	7811	9325.5	_	
$\frac{(\mu/e)_{MC}}{Multi-GeV}$ Fully Contained (E _{vis} > 1.33 GeV)				
	Data	MC(Honda flux)		
1ring e-like	626	612.8	—	
μ-like	558	838.3		
Multi ring	1318	1648.1		
Total	2502	3099.1		
Partially Contained (assigned as μ-like)				
Total	754	1065.0		
$\frac{(\mu/e)_{\text{Data}}}{(\mu/e)_{\text{MC}}} = 0.675 +0.034 -0.032 \pm 0.080$				

Zenith angle distribution

1289 days (79.3 kt.yrs)

Multi-ring event analysis

1289 days (79.3 kt.yrs)

Zenith angle distributions preliminary

- No oscillation
 - Best fit ($\Delta m^2 = 2.0 \times 10^{-3} \text{eV}^2$, $\sin^2 2\theta = 1.00$)

The zenith angle distortion is consistent with single-ring analysis.

Zenith angle distributions of upward-going muons

<u>Allowed region</u> (FC + PC + UP-thru + UP-stop)

<u>SK combined result</u> $\Delta m^2 = (1.7 \sim 4) \times 10^{-3} eV^2$ sin²2θ > 0.89 (90% C.L.)

 SK combined result

 $\Delta m^2 = (1.7 \sim 4) \times 10^{-3} eV^2$
 $sin^2 2\theta > 0.89$ (90% C.L.)

Zenith angle distributions for the best fit

<u>Allowed region (grand global fit)</u> (FC + PC + UP-thru + UP-stop + multi-rings)

Within physical region; $x^{2}min = 157.5/170 \text{ dof}$ $at \sin^{2}2\theta = 1.0, \Delta m^{2} = 2.5 \times 10^{-3} \text{ eV}^{2}$ With unphysical region; $x^{2}min = 157.4/170 \text{ dof}$ $at \sin^{2}2\theta = 1.01, \Delta m^{2} = 2.5 \times 10^{-3} \text{ eV}^{2}$

Zenith angle distributions for the best fit (grand global fit)

— No oscillation

- Best fit ($\Delta m^2 = 2.5 \times 10^{-3} eV^2$, $\sin^2 2\theta = 1.00$)

Zenith angle distributions for the best fit (cont) (grand global fit)

— No oscillation

Best fit ($\Delta m^2 = 2.5 \times 10^{-3} eV^2$, $\sin^2 2\theta = 1.00$)

Systematics in the 1D fit

Combined Systematic Errors

		σ_{i}	best fit
α	Absolute Normalization Uncertainty	Free	3.4 %
δ	Ev Spectrum Index	0.05	-0.01
β_L	Sub GeV µ/e Ratio	8 %	-5.9 %
β_{H}	MultiGeV μ/e Ratio	12 %	-12 %
ρ	FC/PC Relative Normalization	8 %	1.1 %
$\eta_{\rm L}$	Sub GeV Up/Down Asymmetry	2.4 %	-1.9 %
$\eta_{\rm H}$	MultiGeV Up/Down Asymmetry	2.7 %	-0.6 %
β_1	FC+PC/Through ↑µ Relative Normalization	7 %	8.7 %
β_2	Through ↑µ/Stop ↑µ Relative Normalization	7 %	-0.7 %
	FC+PC Horizontal/Vertical Uncertainty	4 %	0.2 %
	↑µ Horizontal/Vertical Uncertainty	3 %	0.2 %
	L/E Uncertainty	15 %	-2.5 %
	Mulit-ring/1 ring (Sub-GeV) Relative Normalization	Free	-14.1 %
	Mulit-ring/1 ring (Multi-GeV) Relative Normalization	Free	-15.7 %

 $\underline{\nu}_{\underline{\mu}} \rightarrow \underline{\nu}_{\underline{\text{sterile}}} (\pi^0 \text{ method})$

 $\frac{(\pi^{0}/\mu)_{\text{Data}}}{(\pi^{0}/\mu)_{\text{MC}}} \begin{cases} > 1 \text{ for } v_{\mu} \rightarrow v_{\tau} \\ \approx 1 \text{ for } v_{\mu} \rightarrow v_{s} \end{cases}$

 $(\pi^{0}/\mu)_{data}$ vs $(\pi^{0}/\mu)_{MC-no-osc}$

$\underline{v}_{\mu} \rightarrow \underline{v}_{sterile}$ (matter in earth)

Using matter effect and enriched NC sample $v_{\mu} \rightarrow v_{\tau}$: No matter effect $v_{\mu} \rightarrow v_{s}$: With matter effect Neutrino oscillation in matter: $\begin{pmatrix} v_{\mu} \\ v_{s} \end{pmatrix} = \begin{pmatrix} \cos\theta_{m} \sin\theta_{m} \\ -\sin\theta_{m} \cos\theta_{m} \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix}$ $\sin^2 2\theta_m = \frac{\sin^2 2\theta}{(\zeta - \cos 2\theta)^2 + \sin^2 2\theta}$ $\zeta = -\sqrt{2} G_F n_n E_v / \Delta m^2$ For $\sin^2 2\theta = \sim 1$ $\sin^2 2\theta_m \sim \frac{1}{\zeta^2 + 1}$ And for $E_v = 30 \sim 100 \text{ GeV} \implies \zeta >> 1 \text{ and}$ $\sin^2 2\theta_m << 1$ Suppression !

<u>Strategy:</u>

Obtain allowed region using lower energy events (Fully contained sample)

Then,

Test zenith angle of NC enriched events, high energy PC and through-going muon events.

Allowed region using only FC events

Zenith angle of high energy PC events

zenith angle distribution of high E (E_{vis} >5GeV) PC events (1144days)

50

40

number of events

10

0 ∟ -1

-0.8

-0.6

×ν_s

> 45000 p.e. (E> ~ 5 GeV) <E>=~25 GeV

Zenith angle of upward-going muon

0.6

0.8

1

 v_{τ}

0.4

zenith angle distribution of upward through going μ events (1138days)

 $\Delta m^2 = 3 \times 10^{-3}$ sin²2 $\theta = 1$

0

cosΘ

0.2

-0.2

-0.4

 $\Delta m^2 = 3 \times 10^{-3} eV^2$ $\sin^2 2\theta = 1$

Zenith angle of NC enriched events

<u>Criteria</u> > 400 MeV visible energy Multi-ring event e-like ring is the most energetic ring <u>Contents</u> NC : 29 %

 $v_e CC: 46\%$

 ν_{μ} CC : 25 %

zenith angle distribution of N.C. enriched multi-ring events (1144days)

Ratios vs. Δm^2

 $(\cos\Theta \ge 0.4)$ of up muons

Allowed vs. excluded regions

combine NC enriched, high E PC and up muons

excluded region from combined analysis(multi+PC+upµ)

 $v_{\mu} \rightarrow v_{s}$ is excluded with 99 % C.L.

Search for τ leptons

- . Higher multiplicity of Cherenkov rings
- . More $\mu \rightarrow e$ decay signals
- More spherical event pattern

Search for τ appearance (3 methods) :

- (1) Energy flow and event shape analysis
- (2) Likelihood method using # of rings, $\mu \rightarrow e$, max p.e.

ring and etc.

(3) Neural network method

Each method is optimized using only downward going events and then looks at upward going events. (I.e. blind method to disable systematic bias.)

Multi-ring samples

 $= : \operatorname{atm} v_{\mu} + v_{e} \text{ w/o } v_{\tau} \\ = : v_{\tau} CC$

All methods show ~ 2σ excess of τ -like events. The result is consistent with $v_{\mu} \rightarrow v_{\tau}$ oscillations.

Probability of exotic oscillation models

Test $\nu_{\mu} {\rightarrow} \nu_{\tau}$ oscillation with :

 $P(\nu_{\mu} \rightarrow \nu_{\tau}) = \sin^{2}2\theta \sin^{2}(\beta L \times E^{n})$ (θ, β, n : parameters)

n=-1 is the standard neutrino oscillation

Use FC, PC, Up-through, and Up-stop data

Neutrino decay

Let neutrinos oscillate and decay $v_3 \rightarrow X(invis)$;

$$P(v_{\mu} \rightarrow v_{\mu}) = \sin^{4}\theta + \cos^{4}\theta \exp\left(-\frac{m_{3}}{\tau_{3}}\frac{L}{E}\right)$$
$$+ \sin^{2}\theta \exp\left(-\frac{m_{3}}{2\tau_{3}}\frac{L}{E}\right)\cos\left(\frac{\Delta m^{2} L}{2E}\right)$$

Consider two cases;

<u>λdcy>>λosc, and λdcy<<λosc</u>,

where
$$\lambda_{dcy} = \frac{\tau_3 E}{m_3}$$
, $\lambda_{osc} = \frac{4\pi E}{\Delta m^2}$

 $\lambda dcy >> \lambda osc$

 $\frac{\text{For }\Delta m^2 \rightarrow \infty}{\chi^2_{\min}} = 221.2/153 \text{ dof}$

Bad fit !

 $\lambda dcy << \lambda osc$

For
$$\Delta m^2 \rightarrow 0$$
,
 $\chi^2_{min} = 147.1/153 \text{ dof}$
at (sin²θ, m₃/τ₃) = (0.68, 0.01 (GeV/km))

Good fit !

<u>Up/down of NC enriched events (short λ_{dcv})</u>

FC, Nring>1, Evis>400MeV, Brightest ring = e-like

- Oscillation parameters for $v_{\mu} \rightarrow v_{\tau}$: $\Delta m^2 = 1.7 \sim 4 \times 10^{-3} \text{ eV}^2$, $\sin^2 2\theta > 0.89$ (90%CL)
- 3D flux does not change the conclusion but more precise 3D calculations are needed
- $\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{s}$ is strongly disfavored
- \mathbf{I} π^{0}/μ ratio is consistent with $\nu_{\mu} \rightarrow \nu_{\tau}$
- Excess from τ leptons ~ 2σ
- Decay senario is disfavored with > 2σ
 - for λ_{dcy} >> λ_{osc} and λ_{dcy} << λ_{osc}