ATMOSPHERIC NEUTRINO PRODUCTION

Teresa Montaruli

Bari University and INFN

Special thanks to G. Battistoni, A. Ferrari, P. Sala, P. Lipari, T.K. Gaisser, T. Stanev and M. Honda Les Houches, 18-22 June 2001 - Neutrino Masses and Mixings

Outline

- Atmospheric neutrino results (SK, MACRO, Soudan2) are explained by new physics (oscillations into active or sterile v, v decay, FCNC, ...)
- Almost model-independent quantities have been singled out: flavor ratio and asymmetry
 independent quantities have been singled out:
 flavor ratio and asymmetry
 independent quantities have been singled out:
- Atmospheric V study requires investigations on interaction models, primary cosmic rays and other secondary spectra, geomagnetic field and solar modulation
- Warning: not man made v source \Rightarrow high precision calculations needed
- Status of current calculations, comparison between models and data, improvements for the future
- All this work aims at answering to "How precisely can we determine Δm^2 ?"

Model independent quantities

- Absolute flux normalization still uncertain (20-30%) level but model independent quantities:
- ·Up/Down symmetry far from geomagnetic effects $E_V \gtrsim 2 \mbox{ GeV}$
- •Flavor ratio (μ /e)
- Upgoing Through-going $\mu \cos\theta$ distribution and horizontal/vertical (important for $\nu\mu \rightarrow \nu\tau / \nu\mu \rightarrow \nu$ sterile discrimination) $\nu_{\mu} + \bar{\nu}_{\mu}$ flux from pions and kaons

Flavor ratio comparison: ve+1/3anti-ve/vµ+1/3anti-vµ

For Ev<30 GeV agreement~5%

At larger energies larger uncertainties in K physics (must be understood)

 $Rv = e/\mu$ decreases more at vertical due to longer path at horizon available for μ decay

Up/Down Asymmetry

Shape of the angular distribution

HE events have larger uncertainties due to:

- external upgoing $\mu s \Rightarrow$ no electron flavor, lower hemisphere
- flux normalization larger uncertainty than at lower Ev due to primary flux measurements and role of K decay more relevant
- •Horizontal/vertical important to discriminate active/sterile oscillations Uncertainties:
- 1) $\delta(V/H)/(V/H) \sim 0.12 \ \delta(K/\pi)/(K/\pi)$ L_{dec} ~ 0.75 (E(GeV)/100) km (K)
- $L_{dec} \sim 0.75$ (L(GeV)/100) km (R) $L_{dec} \sim 5.6$ (E(GeV)/100) km (π)

almost all K decay at ~100 GeV ⇒ almost

isotropic ν contribution with θ

competition of interaction/decay for π^{\pm} : decay more easily at horizon for increasing energy \Rightarrow horizontal > vertical flux

2) δ(V/H)/(V/H)~0.25 δα

uncertainty in the slope

In quadrature: ~3% error on V/H

Atmospheric v events

Surface events: through-going/stopping μs

from external interactions upward versus to discriminate atm μ background; detection region increased by muon range

Super-Kamiokande response curves

Do atmospheric vs need a new physics?

$$R = \frac{\left(\frac{\mu - like}{e - like}\right)_{DATA}}{\left(\frac{\mu - like}{e - like}\right)_{MC}}$$

μ-like (tracks): deficit e-like (showers): in agreement with expected

Kamiokande Multi-GeV: flavor ratio angular dependence as expected from oscillations

Oscillations in atmospheric vs

 $\begin{array}{l} 100 \mbox{ MeV} \lesssim E_{\nu} \lesssim 10 \mbox{ TeV} \\ 10 \mbox{ km} \lesssim L \lesssim 10^{4} \mbox{ km} \end{array}$

Wide range to investigate oscillations! For Sub-GeV and Multi-GeV $P(v_{\ell} \rightarrow v_{\ell}) = 1 - \sin^{2} 2\theta \sin^{2} \left(\frac{\Delta m^{2} L}{4E_{v}} \right)$ $\langle P(L \leq 100 \text{ km}) \rangle \rightarrow 1$ $\langle P(L \geq 2000 \text{ km}) \rangle \rightarrow 1 - \frac{\sin^{2} 2\theta}{2} \Rightarrow \frac{1}{2}$

Horizontal events in transition region L ~500 km are important to determine Δm^2

T. Montaruli, Les Houches, 18-22 June 2001

Super-Kamiokande evidences

Super-Kamiokande data (Y. Totsuka talk) explained by $\nu\mu \rightarrow \nu\tau$ oscillations

 $\nu\mu \rightarrow \nu sterile disfavoured 99\% cl$

Muon deficit is energy dependent

Best fit: $\Delta m^2 = 0.0025 \text{ eV}^2$ sin²2 θ = 1, χ^2 /dof = 142/152

Smoking gun: asymmetry UP/Down μ -like (70kt yr) $0.54 \pm 0.04 \pm 0.01 (9\sigma)$

T. Montaruli, Les Houches, 18-22 June 2001

Super-Kamiokande: L/E dependence

MACRO: different technique

Vertical/horizontal through-going μ s exclude $\nu \mu \rightarrow \nu$ sterile @ 99% c.l.

MACRO favors $\nu\mu \rightarrow \nu\tau$

Montecarlo and analytical calculations

Montecarlo (all details can be included):

- HKKM: M. Honda, T. Kajita, K. Kasahara & Midorikawa, Phys. Rev D52 (1995)
- Bartol: G. Barr, T.K. Gaisser and T. Stanev, Phys. Rev. D39 (1989) and ICRC95,
 V. Agrawal, T.K. Gaisser, P. Lipari, T. Stanev, Phys. Rev. D53 (1996)
- "Standard references" used in Super-Kamiokande, MACRO, Soudan2,...

New calculations (under development): 3D:

• G. Battistoni, A. Ferrari, P. Lipari, T. Montaruli, P.R. Sala & T. Rancati, Astrop. Phys. 12 (2000) [Updated results in http://www.mi.infn.it/~battist/neutrino.html]

- Y. Tserkovnyak, R. Komar, C. Nally, C. Waltham, hep-ph/9907450
- P. Lipari, Astropart.Phys.14:153-170,2000
- M. Honda, T. Kajita, K. Kasahara, S. Midorikawa, hep-ph/0103328
- V. Plyaskin, hep-ph/0103286
- 1D:
- •G. Fiorentini, V. A. Naumov, F. L. Villante, hep-ph/0103322

Analytical (fast and for tests to understand processes)

T.K. Gaisser, astro-ph/0104327, P. Lipari, Astropart. Phys.1 (1993)

T. Montaruli, Les Houches, 18-22 June 2001

NOT ALL MENTIONED HERE!

Some comments

"Standard references" very close to final result: improvements/checks are going to be presented

New calculations can be validated through comparison to existing data; results from a set of calculations which are converging (HKKM, Bartol, Fluka,...) should be taken into account

Improvements are motivated by understanding that agreement (~10%) between HKKM and Bartol comes from compensation of errors

1. Bartol uses a primary flux closer to LEAP and recent measurements but seems to produce higher multiplicities of pions, kaons and different momentum distributions than FLUKA

2. HKKM uses a primary flux closer to Webber et al., higher than more recent measurements

Calculations are checked comparing each "ingredient" by changing them inside calculations under comparisons

Fundamental benchmark: muons

Calculation inputs

- 1. Primary spectra (fits to recent measurements, isotropy, superposition model, solar modulation)
- 2. Hadronic interactions (multiplicities, energy distributions, cross-sections)
- 3. Shower modeling (particle trasport, energy losses, decays including polarization)
- 3. Geometry: 3D/1D
- 4. Geomagnetic effects: E-W asymmetry, under cut-off fluxes, bending of shower particles
- 5. Atmosphere profiles and seasonal effects
- 6. Neutrino interaction cross sections: from neutrinos to leptons
- 7. Minor effects: detector altitude, mountain profiles

Primary spectrum

Before 1990 primary spectrum $\leq 100 \text{ GeV}$ ambiguous due to 50% discrepancy between Webber et al. (1987) and LEAP (1991) Recent data (CAPRICE, AMS, BESS) agree with lower LEAP normalization Determination with systematic uncertainty ~±5% (agreement AMS-BESS98) For E \leq 1 TeV uncertainty ~10% (important for upward muons) At E \geq 1 TeV uncertainty \geq 25% but small contribution to observed fluxes

T. Montaruli, Les Houches, 18-22 June 2001

Primary and neutrino energies

Estimated uncertainties have implications on atmospheric vs:

Sub-GeV $E_N \leq 1-200$ GeV, Multi-GeV $E_N \sim 10-1000$ GeV, μ stop $E_N \sim 20-2000$ GeV Up-through $\mu E_N \sim 100-50000$ GeV

Primary energy contributing to v at Kamioka

Solar Modulation

Time dependence for Ev<10 GeV more relevant @ low cut-off sites (Soudan) Solar wind plasma+e.m. fields \Rightarrow heliosphere semi-transparent to opaque medium for low energy CRs correlated with 11 yr-cycle (exact periodicity in 22 yr due to IMF polarity)

Sunspot monitoring by n monitors @ Earth (1-20 GeV): measure hadronic component through secondary interactions in lead+proportional counters

Depends on detector $\lambda \text{+}altitude$

Badhwar & O'Neill (used by FLUKA): $\Phi(MV)$ estimated from fits to Climax n counting rates+ sunspot numbers (> 4 cycles) to predict modulation at later times

Predict galactic CR intensity inside $\pm 10\%$ for 3 month variations

 Φv solar min/ Φv solar max ~5% @1 GeV for SK site

CR flux isotropy: geomagnetic effects

Geomagnetic field prevents low rigidity CRs from reaching atmosphere Dependence on detector location (higher flux at Poles) + CR direction Most important source of asymmetry breaking at $Ev \leq 2$ GeV Test: Super-Kamiokande East-West asymmetry in azimuth

Secondary flux > for W directions due to CR mainly positively charged

Ref.: P. Lipari: hep-ph/9905506, hep-ph/0003013, P. Lipari, T. Stanev & T.K. Gaisser, PRD58 (1998), HKKM, hep-ph/0103328, http://nssdc.gsfc.nasa.gov/space

CR flux isotropy: geomagnetic effects

Offset dipolar model not precise enough

International Geomagnetic Reference Field employs spherical harmonic expansion of scalar potential (coefficients slightly vary with time) Dipolar models can differ ~30% from IGRF Back-tracing technique: backward path for CR with same A and E but opposite charge (allowed = out of geomagnetic sphere to ∞)

AMS measurement of CR fluxes at different latitudes CR isotropy at 10% level Asymmetry breaking: Up Sub-GeV flux > Down @ SK due to high cut-off, < @ Soudan due to low cut-off

FLUKA < Bartol asymmetry due to lower v yield

T. Montaruli, Les Houches, 18-22 June 2001

Sub-cutoff fluxes

AMS PLB472 (2000) @ ~400 km in $\pm 51.7^{\circ}$ latitude interval: sub-cutoff secondary fluxes produced by CR in upper atmosphere, bent by geomagnetic field toward higher altitudes; trapped at lower altitudes for seconds bowngoing p fluxes

Atmosphere models

- Atmosphere density profile depends on geographical position and seasonal temperature variations: affect competition between interaction-decay
- If T increases ρ decreases \Rightarrow mesons have decay prob. > interaction prob. AMANDA $\pm 10\%$, MACRO $\pm 1.5\%$
- For atm. μ easier calculation than for ν coming from all over the Earth
- T is very different for downgoing/upgoing vs
- US-standard model widely used in calculations; comparisons with balloon measurements show differences (MACRO estimates effect ~1% for upµs)

Seasonal effects

Seasonal effects: additional source of uncertainty in vertical/horizontal to discriminate $Vsterile/V\tau$ oscillations (SK, MACRO)

MACRO estimates 3% error on K/ π , 2% from V cross sections due to different energy distributions and (analytical calculation) 1.3% due to seasonal effects, 1% to different atmospheres than US standard MACRO throughgoing μ s: R= (-1<cos θ < -0.7)/(-0.4<cos θ <0) divided in "winter" (Nov.-Apr.) and "summer" \Rightarrow winter-summer variation of vertical/horizontal 19±17% (stat)

Honda: estimates variation on muon neutrino fluxes from winter to summer ~6% @ 100 GeV at vertical (max effect)

FLUKA group is preparing setup for 4 different atmospheres

Primary-v directions

 $\begin{array}{ll} \theta \mathbf{N} \mathbf{v} = \theta \mathbf{N} \pi \oplus \theta \pi \mathbf{v} & (\text{when } \mu \text{ decay: } \theta \mathbf{N} \mathbf{v} = \theta \mathbf{N} \pi \oplus \theta \pi \mu \oplus \theta \mu \mathbb{B} \oplus \theta \mu \mathbf{v}) \\ < \theta \mathbf{N} \pi > \sim <\mathbf{p}_{\mathsf{T}} > /\mathbf{p} \pi \sim \mathbf{0.35} \ \mathbf{GeV/c/4Ev} \sim 5^{\circ}/\mathbf{Ev} \ (\mathbf{GeV}) \\ \text{Negligible contributions:} \\ \pi \rightarrow \mu \mathbf{v}: \quad \theta \pi \mathbf{v} \sim \mathbf{pcm/pv} \sim \mathbf{1.7^{\circ}/Ev} & \theta \pi \mu \sim \mathbf{pcm/p\mu} \sim \mathbf{pcm/3pv} \sim \mathbf{0.6^{\circ}/Ev} \\ \mu \rightarrow \mu \mathbf{vv}: \quad \theta \mu \mathbf{v} \sim \mathbf{m} \mu / \mathbf{3Ev} \sim \mathbf{2^{\circ}/Ev} \ (\mathbf{GeV}) \\ \mu \text{ bending: } \theta \mu \mathbb{B} \sim \mathbf{L} \mu / \mathbf{R} \mu \sim (\tau \mu \ \mathbf{p} \mu / \mathbf{m} \mu) \ (\mathbf{eB} / \mathbf{p} \mu) \sim \mathbf{10.7^{\circ}B} \ (\mathbf{Gauss}) \\ \text{high } \mathbf{p} \mu \Rightarrow \text{bend less but live longer} \Rightarrow \mathbb{B} \ \text{acts longer} \end{array}$

T. Montaruli, Les Houches, 18-22 June 2001

3D/1D effects

Differences between 1D/3D calculations have been investigated

1D: p_T of secondaries in int./decay+multiple scatt. neglected $\Rightarrow v$ collinear to primary) based on 2 hypotheses:

1) isotropy of primary CRs

2) spherical geometry of Earth+atmosphere

Valid approx. for Multi-GeV: θNv increases for decreasing Ev

Differences in Sub-GeV angular distribution due to large $\theta N\nu$: 3D enhancement @ horizon

Geometrical effect: vs between θ - θ +d θ produced by atmosphere patch of area $dA=L^2(\theta)d\theta$ / $\cos\theta e$ L= distance to detector $\theta e= v$ emission angle 1/ $\cos\theta e$ responsible of horizontal enhancement

3D/1D: horizontal enhancement

Sub-GeV flux at Kamioka

3D/1D: normalization

Superkamiokande site Small effect on normalization ~5% for Ev<1GeV

1D/3D and geomagnetic field

Next step: introduce geomagnetic field in shower development Loss of rotational symmetry \Rightarrow high inefficiency (calculations must be performed at detector site)

No B in shower development (FLUKA): v generated on sphere with B=0 v reaching surface can be rotated with its parent to detector site for cut-off calculations For each upcoming v a "mirror" downcoming v is created (there is up-down symmetry because v is generated with B=O) FLUKA(next future): weighting towards detector location HKKM: dipolar field (axial symmetry) Tservkovnyak et al., huge detector size

1D/3D zenith angular distributions

HKKM: confirm horizontal enhancement

1D no cut-off:

average int. point ~100 gr/cm² Horiz. CR produce π at higher altitude than vert. \Rightarrow $\pi-\mu$ decay at lower density \Rightarrow int. prob.

+μ energy loss increase with air density

Horiz. V > vert. V Cut-off modifies zenith dependence (@ high magnetic lat. downward>upgoing ¹⁰flux)

T. Montaruli, Les Houches, 18-22 June 2001

31

1D/3D: μ bending

Effect on E-W asymmetry (predicted in P. Lipari, astro-ph/0003013):

enhancement of asymm. effect for V_e , V_μ from μ^+ suppression for V_e , V_μ from μ^- 3D with geomagnetic cut-off can reconcile SK observation Ae > A μ (while 1D: Ae = A μ)

From W: for $p \rightarrow \pi^+ \rightarrow \mu^+ \rightarrow \nu \quad \langle \theta p \nu \rangle = \theta p \pi + \theta \mu B \langle \theta p \pi$ for $p \rightarrow \pi^- \rightarrow \mu^- \rightarrow \nu \quad \langle \theta p \nu \rangle = \theta p \pi + \theta \mu B \rangle \theta p \pi$ From E: opposite effect $d\Omega \propto \cos \theta p \nu$ and $\Phi_{\nu} \approx \Phi_{\overline{\nu}} + \sigma_{\nu} > \sigma_{\overline{\nu}}$

Effect of geomagnetic field in shower development

3D: shows horizontal increase due to geometry Geomagnetic field in shower development: effects ~10-20% up to ~10 GeV almost independent on Ev (when μ decay)

It is a precision check on geomagnetic treatment

These effects have small Impact on $\Delta \mathbf{m}^{\mathbf{2}}$

FLUKA setup

FLUKA2000 interaction and transport code

(A. Ferrari et al., Proc. of CALOR2000):

theory driven approach not phenomenological/tuned on experimental data Conservation laws fulfilled *a priori* Extensive benchmark against data h-A interactions based on resonance production and decay below few GeV and on Dual Parton Model and h-A+A-A Glauber model to tens of TeV

The setup for atmospheric vs:

3D representation of Earth and atmosphere (50-100 shell) to ~100 km (0.1 gr/cm²) with Shibata "standard atm" profile; all secondaries can be scored Primary particles injected at ~100 km sampled from Bartol flux at solar min Solar modulation from NASA tables and algorithms using Climax data

For μ benchmarks: cut-off+shower development through back-tracing

For vs: cut-off only (to be improved)

Superposition model will be replaced by DPMJET using nuclear projectiles Change in primary spectrum can be obtained just through weighting All relevant physics: polarization in decays, energy losses, multiple scatter.

FLUKA atm. v simulation will be used by ICARUS

Used for CNGS beam project, tested in Nomad and comparison with SPY

Interaction models: FLUKA/TARGET

p Be collisions at 14.6 GeV

T. Abbott et al. PRD45(1992) (BNL E-802): explored different targets (Be, Al, Cu, Au) at single lab energy, lab angle 5°-58°, Xlab \Rightarrow 0.1 where most differences between atm. calculations but extrapolations needed to obtain dN/dx_{lab} from rapidity distributions

FLUKA: benchmarks

FLUKA: benchmarks

FLUKA compared to SPY p(450GeV/c)+Bewith 3% precision on K/ π for p<40 GeV/c (Ambrosini et al., Eur Phys JC10(1999) and Atherton et al. (CERN rep80-07) p(400 GeV/c)+Befor p>67.5 GeV

K [±] yields from 10 cm Be target in momentum ranges vs production angle

T. Montaruli, Les Houches, 18-22 June 2001

FLUKA/TARGET: v yields

FLUKA/TARGET: v yields

From extensive comparison we learnt: TARGET gives too high π multiplicity @ small x = E/E₀. Next future: new 3D TARGET (ICRC) No model is perfect, all need continuous benchmark against data

FLUKA/TARGET

Vertical Proton Showers

At HE FLUKA produces softer Vs

Warning: from v fluxes to detected rates uncertainties on v cross sections are relevant Larger for Ev ~0.1-10 GeV (quasi-elastic interactions, resonance production, nuclear effects, transition in DIS regime) Need of higher precision data (K2K, LBL near detectors)

Average n. of atm $\nu \mu$ produced by vertical protons

FLUKA/TARGET

π⁺ production in p-Air 30 GeV π production in p-Air 30 GeV xp/Np xb/Nb 1 p-Be Exp data p-Be Exp data FLUKA FLUKA 0.8 Eichten et al. 0.8 Eichten et al. Abbot et al. Abbot et al. Allaby et al Allaby et al TARGET TARGET 0.6 0.6 0.4 0.4 0.2 0.2 00 °ò 0.7 0.8 0.9 0.1 0.2 0.3 0.5 0.6 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.4 X_{lab} Xiab

Fluka predicts that a smaller fraction of primary energy goes into charged pions \Rightarrow smaller v fluxes

Gheisha

T. Montaruli, Les Houches, 18-22 June 2001

FLUKA floating muon benchmark

Important benchmark to validate v calculations (same parents, shower development check)

Differences TARGET/FLUKA: not due to FLUKA insufficient particle production

CAPRICE 94 (Lynn Lake) FLUKA 3D, 100 standard USA atm. shells, Bartol all-nucleon spectrum modulated with Climax n data, geomagnetic field in shower development

Floating muon benchmark: 3D/1D

1D brings overestimate at low pµ: kinematic angles + bending in geomagnetic field ⇒ increase of path-length and larger decay probability Better agreement than 1D by Fiorentini et al. (produces lower fluxes at low energies)

Warning: still Bartol CR flux

Negative muons

Correlation between muons and neutrinos

u energy distribution in intervals of p_{μ} for in π decay 3500 Caprice 94 µs constrain Sub-GeV 2250 🗄 0.97,1.23 GeV 🥅 • 0.3-0.53 GeV 3000 2000 1.23,1.55 GeV events 2500 0.53,0.75 GeV 1750 Average v energies in μ momentum 1500 0.75.0.97 GeV 2000 1250 intervals: 1500 1000 750 1000 500 $p\mu \text{ GeV/c} < \text{Ev} > \text{GeV}$ Frac. of primaries 500 250 with E<10 GeV 0 Û -0.5-2 0 -20 -1 -1.5log₁₀E_v(GeV) 0.3 - 0.53 0.19 42% 0.53 - 0.75 0.25 34% 3500 3500 0.75 - 0.97 28% 3000 1.55,2 GeV 0.32 3.2,8 GeV 3000 0.97 - 1.23 0.39 22% 2500 2.3.2 GeV 2500 8.40 GeV 1.23 - 1.55 0.48 18% 2000 2000 1500 1.55 - 2 0.60 13% 1500 1000 2 - 3.2 5% 0.89 1000 500 3.2 - 8 0.6% 500 1.44 0 0 8 - 40 3.28 0% -2 2 -2-1 0 Ũ -1 log₁₀Ev

Correlation between muons and neutrinos

Thanks to V.A. Naumov

Comparison of absolute vµ+anti-vµ fluxes

Averaged over solid angle v_{μ} +anti- v_{μ} fluxes Solar min SK

Comparison of vertical and horizontal vµ+anti-vµ fluxes

Vert. and Horiz. $\nu_{\mu} \text{+}anti\text{-}\nu_{\mu}\text{-}fluxes$ Solar min SK

For Ev<600 MeV FLUKA 3D produces larger fluxes than Bartol at the horizon, lower at the vertical

Comparison of absolute ve+anti-ve fluxes

Averaged over solid angle v_e +anti- v_e fluxes Solar min SK

Comparison of vertical and horizontal ve+anti-ve fluxes

Vert. and Horiz. v_e +anti- v_e fluxes Solar min SK

For Ev < 600 MeV FLUKA 3D produces larger fluxes at the horizon, lower at the vertical

Charge ratio comparison: ve/anti-ve

Charge ratio comparison: vµ/anti-vµ

SK regions with FLUKA

Conclusions

- A lot of comparison work is being done between models and data and between models themselves
- Major changements for next future calculations are due to:
- Recent Precise measurements of primary CRs
- •Accelerator data and atmospheric muon benchmarks (but ~10% error from experiments) which seem to favor FLUKA interaction model with respect to models producing higher π/K multiplicities
- Effects at %level are investigated to reach a very good description of shower propagation, interactions, geomagnetic field, solar modulation
- Normalization error will probably be decreased at 15% level but reliable
- measurement are flavor ratio, asymmetry, shape of HE angular distibution (all this changements produce negligible effects for Δm^2 evaluation)
- If SK, Soudan2, MACRO will be able to reduce exp. errors measurements can be used to constrain calculations
- Future experiments (HARP and hopefully others at higher energies) will provide necessary knowledge for future generation experiments towards an exact determination of Δm^2 and channel
- Future experiments improving cross section knowledge are needed

Neutrinos from meson decay

