v oscillations in ANTARES

Dick Hubbard / Saclay

for the ANTARES collaboration

Antares site Antares detector Neutrino astronomy Oscillations studies Antares schedule

40 km off Toulon in Mediterranean Sea Effective area 0.1 km², 10 strings, 900 PMTs Sky coverage 3.6π including galactic center Amanda overlap 0.6π Current analysis - partially contained events Work in progress - stopping & thru-going events 1st prototype deployed Nov 1999 - June 2000 Full detector deployment 2002 - 2004

ANTARES collaboration

* University and INFN, Bari

* INFN - LNS, Catania

* University and INFN, Bologna

* University and INFN, Catania

* University I and INFN, Rome

* University and INFN, Genova

University of OxfordUniversity of Sheffield

* ITEP, Moscow

* IFIC, Valencia

NIKHEF, Amsterdam

ANTARES scientific program

Low Energy

Medium Energy

High Energy

 ν oscillations

Observation of first oscillation minimum **Neutralino search**

 $\chi \chi \rightarrow v + X$ center of earth, sun, galaxy

GRB cannonballs

∨ from (extra-) galactic sources SN remnants, AGN, GRB, ...

ANTARES detector

Water optical properties

Oscillations analyses

Current analysis Contained events and leaving muons

10 string detector : generate ν 's with $E_{\nu} = 4 - 300 \text{ GeV}$ Atmospheric neutrino flux from Bartol : statistical errors only Large hadronic showers rejected by quality cuts

Work in progress

Hadronic showers for partially-contained events

Shower energy precision ~ factor 2 at 1σ Minimum error ~ $\pm 10 \text{ GeV} \Rightarrow$ poor for Super-K parameters

Analysis of stopping and through-going muons

Generate neutrinos with $E_v = 4 \text{ GeV} - 100 \text{ TeV}$ Two analyses using visible E/L or zenith-angle distribution v flux normalization from data : fitted as 3rd parameter

v oscillations : partially-contained events

Bartol atmospheric ∨ flux
4 years, 90% C.L.
720 single-string events
2100 multi-string events
Statistical errors only

v oscillations : all events

90% C.L exclusion after 3 years

Atmospheric v flux = 3rd parameter

Zenith angle distribution Multi-string events - no containment cuts

E/L distribution - no containment cuts Single- and multi-string events

E/L distribution - partially-contained only Single- and multi-string events

4063 events per year including
294 partially-contained single-string
428 partially-contained multi-string
3341 thru-going + stopping multi-string

Systematic errors \pm 5% bin-to-bin

Comparative precision

Sources of systematic errors

Background sources

Electron- and tau-neutrino backgrounds negligible Atmospheric single- and multi-muon backgrounds small

Detector acceptance and calibration

Relative timing and relative positions should be O.K.

Calibrate efficiencies for single-string and multi-string events ?

Atmospheric neutrino flux

Flux normalization fit as 3rd parameter in oscillations analysis Flux shape uncertainties influence mainly $\sin^2 2\theta$ determination

Conclusions

Three low-energy \lor **studies for Antares** $\mathbf{E}_{\lor} < \mathbf{1} \, \mathbf{TeV}$

Neutrino oscillations	 guaranteed physics result
Dark matter	- only if favorable DM parameters
Cannonballs	- possible early astrophysics result

Oscillations parameters : work in progress

 Δm^2 precision improved throughout Super-K allowed region

for $\sin^2 2\theta = 1$ exclusion zone covers $\Delta m^2 = 3 \times 10^{-4} - 0.6 \text{ eV}^2$ for $\Delta m^2 = 3.5 \times 10^{-3} \text{ eV}^2$ exclusion zone covers $\sin^2 2\theta > 0.25$

Systematic errors important

Flux shape and differential efficiency mainly affect $\sin^2 2\theta$