Sudbury Neutrino Observatory

Results from the Sudbury Neutrino Observatory

Karsten M. Heeger For the SNO Collaboration CENPA, Seattle

- Design and Physics Objectives
- Detector Operations
- Calibration and Detector Response
- Data Analysis
- First Results

SNO Collaboration

J. Boger, R. L Hahn, J.K. Rowley, M. Yeh Brookhaven National Laboratory

I. Blevis, F. Dalnoki-Veress, W. Davidson, J. Farine, D.R. Grant, C. K. Hargrove, I. Levine, K. McFarlane, C. Mifflin, T. Noble, V.M. Novikov, M. O'Neill, M. Shatkay, D. Sinclair, N. Starinsky Carleton University

J. Bigu, J.H.M. Cowan, E. D. Hallman, R.U. Haq, J. Hewett, J.G. Hykawy, G. Jonkmans, A. Roberge, E. Saettler, M.H. Schwendener, H. Seifert, R. Tafirout, C. J. Virtue. Laurentian University

Y. D. Chan, X. Chen, M. C. P. Isaac, K. T. Lesko, A. D. Marino, E. B. Norman, C. E. Okada, A. W. P. Poon, A. R. Smith, A. Schülke, R. G. Stokstad. Lawrence Berkeley National Laboratory

T. J. Bowles, S. J. Brice, M. Dragowsky, M.M. Fowler, A. Goldschmidt, A. Hamer, A. Hime, K. Kirch, G.G. Miller, J.B. Wilhelmy, J.M. Wouters. Los Alamos National Laboratory

E. Bonvin, M.G. Boulay, M. Chen, F.A. Duncan, E.D. Earle, H.C. Evans, G.T. Ewan, R.J. Ford, A.L. Hallin, P.J. Harvey, J.D. Hepburn, C. Jillings, H.W. Lee, J.R. Leslie, H.B. Mak, A.B. McDonald, W. McLatchie, B. Moffat, B.C. Robertson, P. Skensved, B. Sur. Queen's University S. Gil, J. Heise, R. Helmer, R.J. Komar, T. Kutter, C.W. Nally, H.S. Ng,Y. Tserkovnyak, C.E. Waltham. University of British Columbia

T.C. Andersen, M.C. Chon, P. Jagam, J. Law, I.T. Lawson, R. W. Ollerhead, J. J. Simpson, N. Tagg, J.X. Wang University of Guelph

J.C. Barton, S.Biller, R. Black, R. Boardman, M. Bowler, J. Cameron, B. Cleveland, X. Dai, G. Doucas, J. Dunmore, H. Fergani, A.P. Ferraris, K.Frame, H. Heron, C. Howard, N.A. Jelley, A.B. Knox, M. Lay, W. Locke, J. Lyon, S. Majerus, N. McCaulay, G. McGregor, M. Moorhead, M. Omori, N.W. Tanner, R. Taplin, M. Thorman, P. Thornewell. P.T. Trent, D.L. Wark, N. West, J. Wilson University of Oxford

E. W. Beier, D. F. Cowen, E. D. Frank, W. Frati, W.J. Heintzelman, P.T. Keener, J. R. Klein, C.C.M. Kyba, D. S. McDonald,
M.S.Neubauer, F.M. Newcomer, S. Oser, V. Rusu, R. Van Berg, R.G. Van de Water, P. Wittich. University of Pennsylvania

Q.R. Ahmad, M.C. Browne, T.V. Bullard, P.J. Doe, C.A. Duba, S.R. Elliott, R. Fardon, J.V. Germani, A.A. Hamian, R. Hazama, K.M. Heeger, M. Howe, R. Meijer Drees, J.L. Orrell, R.G.H. Robertson, K. Schaffer, M.W.E. Smith, T.D. Steiger, J.F. Wilkerson. University of Washington

> R.G. Allen, G. Buhler, H.H. Chen* University of California , Irvine

Sudbury Neutrino Observatory

Neutrino Detection in SNO

Neutrino Interactions in D ₂O and H ₂O and their Flavor Sensitivity

Charged-Current(CC) $v_e + d \rightarrow e^- + p + p$ $E_{thresh} = 1.4 \text{ MeV}$	v _e only Measurement of energy spectrum
Elastic Scattering (ES) $v_x + e^- \rightarrow v_x + e^-$	ν_{x} , but enhanced for ν_{e} Strong directional sensitivity
Neutral-Current(NC) $v_x + d \rightarrow v_x + n + p$ $E_{thresh} = 2.2 \text{ MeV}$	ν _x Measurestotal ⁸ B flux from Sun

SNO Physics Program

Solar Neutrinos	 Search for v flavor change CC/ES, CC/NC ⁸B Total Flux (test of solar models) Spectral distortions
	· opeend determente
	 Time Dependences
	diurnal
	annual
	solar cycle
	 Measurement of hep flux

Supernova watch, relic SN neutrinos

Antineutrinos

Atmospheric Neutrinos

I. Pure D ₂ O	CC, ES some NC n+d \rightarrow t+ γ (E γ = 6.25 MeV, $\epsilon_n \sim 24\%$)
II. D ₂ O+NaCI (added salt)	CC, ES enhanced NC $n+{}^{35}CI \rightarrow {}^{36}CI+ \gamma$ (E $_{\gamma}$ = 8.6 MeV, ϵ_{n} ~45% above threshold)
III. D ₂ O+NCDs (³ He proportional counters)	Concurrent CC, NC, ES n+ ³ He \rightarrow p+t \rightarrow event by event separation ($\epsilon_n \sim 37\%$)

SNO Phase II - Addition of Salt

SNO Phase II: D 20+NaCL

- Runtime about 8 months
- Enhances neutron capture efficiency: $\epsilon_n \sim 83\%$ (~45% above threshold)

May 28 - June 5, 2001

- Salt introduced at bottom of detector
- Addition of NaCL completed

Event Rate vs z Position During Addition of Salt

Reconstructed Z Position -- Time Normalized, Window 2

SNO Phase II - Physics with Salt

Preparations for Phase III - Neutral Current Detectors

NCD Array

NC Detection: $n+{}^{3}He \rightarrow p+t$ Total Length:775 mCounters:292 (300)Vertical Strings:96n capture efficiency: $\epsilon_{n} \sim 45\%$

Neutron Background Estimates

from Radioassay uniform+nearvessel:

<4.4% SSM

Status of NCD Project

First deployment of NCD into D₂O Sep 2000 Counter construction complete April 2001 Electronics Commissioning Summer 2001 DAQ partially complete Analysis of cooldown data Development of pulse shape analysis techniques

Schedule

Pre-deployment welding: Deployment of NCD array: Winter 2001 Summer 2002

Calibration and Detector Response

Calibration Issues

• Photon Generation, transport, and detection

- different media: D_2O , acrylic, H_2O , PMT
- •attenuation, reflection, scattering
- Detector geometry
- Detector status and conditions

Calibration Techniques Electronics	electronicpulse	rs, pulsed light sources
Optical Response	pulsed laser at λ =337, 365, 386, 420, 500, and 620 nm, ~2 ns resolution	
Energyresponse	¹⁶ N p,t neutrons ⁸ Liβspectrum ⁸ Bβspectrum	6.13 MeV γ , tagged 19.8 MeV γ 6.25 MeV γ 13 MeV endpoint 15 MeV endpoint

Calibration Systems

Source Deployment

- In two planes in D_2O
- One line in $H_2O(so far)$
- •Positioning accuracy: ±2-5cm

Optical Response - Timing Residuals

Time Since Last Hit Dependence

Effect

- Variation in ADC pedestal with time since last hit (TSLH)
- Variation in ADC s lope with time since last hit (TSLH)

Observation Timing residuals depend on data rate

Software Solution

Calibrated out in reconstruction of neutrino data

Effect on Reconstruction

N16 source at Z=-400cm

Low Rate vs High Rate Data & Corrections

Event Reconstruction

Vertex resolution: ~16 cm

Angular Resolution

Error in reconstructed event direction: Resolution function:

 $\theta_e = \vec{u}_{fit} \bullet \vec{u}_e$

true angular resolution

+ multiple scattering of e⁻

Optical Response: D₂O and H₂O Attenuation

SNO Energy Response - Absolute Energy Scale

• established with triggered ${}^{16}N(E_{\gamma}=6.13 \text{ MeV})$ • tested against ${}^{8}\text{Li}, {}^{252}\text{Cf}, \text{ and } (p,t) \text{ source}$

SNO Energy Response - Spatial Dependence

• various ¹⁶N positions inside D_2O • Monte - Carlo prediction tested against extended distribution of 6.25-MeV γ from ²⁵²Cf neutrons

Temporal Dependence of Energy Scale

use center ¹⁶N high voltage runs and compare data and Monte-Carlo
actual detector configurations are simulated: noise rate, working tubes
→ energy drift: 2.2±0.2% year

Data Taking and Live Time

Karsten M. Heeger

Detector Performance

Trigger Rates and Thresholds in 2001

Trigger Type	Hardware Threshold	Rate (Hz)
PulsedTrigger	ZeroBias	5
100 ns Coincidence	16PMTs	8
20ns Coincidence	16PMTS	0.02
Energysum	~150 p.e.	4
Prescaled (1:1000)	11 PMTs	0.1

Channel threshold:	~0.25 photo-electrons
Multiplicity trigger:	18 Nhit within 93 ns
Trigger efficiency:	100% efficiency by 25 Nhit (~3 MeV)

Instantaneous Trigger Rate	~15-18Hz
Data Trigger Rate	~6-8 Hz
Hardware Threshold	~2MeV

Solar Neutrino Data Analysis

Data Flow & Instrumental Background Cuts

Removal of Instrumental Background

Instrumental removal: Signal loss: Contamination: Two independent methods $0.4\pm0.3\%$ within R_{fit} 550 cm from ^{16}N , ^{8}Li , and the laser ball limits from bifurcated analyses and hand-scanning

High Level Data Cuts

Reconstructed Neutrino Candidate Events

Characteristic R³ Distribution

Reconstructed Neutrino Candidate Events

Characteristic Solar Angle Distribution

Note: Can already extract with larger uncertainty CC and ES rate from fits to $\cos(\theta_{Sun})$ distribution alone

Reconstructed Neutrino Candidate Events

Characteristic Energy Spectrum

Effective Kinetic Energy T_{eff}

• effective kinetic energy, Teff, determined for each event in D_2O

• T_{eff} corrected for time variable phenomena + position + direction

Principal Physics Backgrounds

D₂OBackgrounds

Target Level

• Equivalent of 7% SSM neutrons

Measurement Techniques

RadiochemicalassaysIn-situ Cerenkov measures

Status

 \Rightarrow at or below target level

H₂OBackgrounds

Target

Equivalent of 7% SSM neutrons

Measurement Technique

- •Radiochemicalassay
- Encapsulated sources
- High radon runs

Status \Rightarrow near or below target levels

Acrylic Vessel Backgrounds

7, (M) (M)

\Rightarrow AV Blob:~9+20/-5 \pm 3 µg 'Th'

PMT β - γ

Characteristics• Strong Nhit dependence but small tails into Cerenkov signalsDetermination \rightarrow Direct counting of materials, Monte-Carlo simulations
 \rightarrow Hot encapsulated U and Th Sources (bkgd < 0.1% within D2O)
 \rightarrow ¹⁶N γ 's from calibration source

External γ -Ray Background

Karsten M. Heeger

Les Houches, June 19, 2001

Experimental Systematic Errors on Fluxes

Error Source	CC Error (%)	ES Error (%)	
Energy Scale Energy Resolution Energy Scale Non-Linearity	+6.1/-5.2 ±0.5 ±0.5	+5.4/-3.5 ±0.3 ±0.4	
Vertex Shift Vertex Resolution Angular Resolution	±3.1 ±0.7 ±0.5	±3.3 ±0.4 ±2.2	
Live Time Trigger Efficiency Cut Acceptance	±0.1 0.0 +0.7/-0.6	±0.1 0.0 +0.7/-0.6	
Residual Backgrounds(R _{fit} 550 cm) Instrumental Background High Energy γ's Low Energy Background	±0.1 -0.8/+0.0 -0.2/+0.0	-0.6/+0.0 -1.9/+0.0 -0.2/+0.0	
Experimental Uncertainty	+7.0/-6.2	+6.8/-5.7	
Cross Section	3.0	0.5	

Signal Extraction

First Solar Neutrino Results From SNO

Karsten M. Heeger

Neutrino Fluxes

241- dayData from SNO

 $\Phi^{CC}_{SNO}(^{8}B) = 1.75 \pm 0.07 \text{ (stat.)} + 0.12/-0.11 \text{ (sys.)} \qquad x10^{6} \text{ cm}^{-2} \text{ s}^{-1}$ $\Phi^{ES}_{SNO}(^{8}B) = 2.39 \pm 0.34 \text{ (stat.)} + 0.16/-0.14 \text{ (sys.)} \qquad x10^{6} \text{ cm}^{-2} \text{ s}^{-1}$

 \rightarrow assuming ⁸B spectral shape, T_{eff} < 6.75 MeV \rightarrow radiative corrections are not applied yet, will only decrease CC flux

CC Flux Relative to BP2001

 $R^{CC}(^{8}B) = 0.347 \pm 0.029$

Total ⁸B Flux from the Sun

 $\phi_{SNO}(^{8}B) = 5.44 \pm 0.99$ x10⁶ cm⁻² s⁻¹ $\phi_{SSM}(^{8}B) = 5.01 + 1.01 - 0.82 \times 10^{6} \text{ cm}^{-2} \text{ s}^{-1}(BP2001)$

 \Rightarrow Total flux in good agreement, CC is only component of total ⁸B flux

CC/ES Ratio

$$\frac{CC}{ES} = \frac{v_e}{v_e + 0.15(v_\mu + v_\tau)}$$

 $\mathrm{ES}_{\mathrm{SNO}}$ and $\mathrm{ES}_{\mathrm{SK}}$

 $\Phi^{\text{ES}}_{\text{SNO}}(^{8}\text{B}) = 2.39 \pm 0.34 \text{ (stat.)} + 0.16/-0.14 \text{ (sys.)}$ $\Phi^{\text{ES}}_{\text{SK}}(^{8}\text{B}) = 2.32 \pm 0.03 \text{ (stat.)} + 0.08/-0.07 \text{ (sys.)}$ x10⁶ cm⁻² s⁻¹ x10⁶ cm⁻² s⁻¹

\rightarrow good agreement

 $\begin{array}{ll} & CC_{SNO}/ES_{SK} \\ & \Phi^{CC}_{SNO}(^{8}B) = 1.75 \pm 0.07 \, (stat.) + 0.12/-0.11 \, (sys.) \pm 0.05 \, (theor.) & x10^{6} \, cm^{-2} \, s^{-1} \\ & \Phi^{ES}_{SK}(^{8}B) = 2.32 \pm 0.03 \, (stat.) + 0.08/-0.07 \, (sys.) & x10^{6} \, cm^{-2} \, s^{-1} \\ & \rightarrow \, \Phi^{ES}_{SK}(^{8}B) - \Phi^{CC}_{SNO}(^{8}B) = 0.57 \pm 0.17 \Rightarrow 3.3 \, \sigma \\ & \rightarrow \, \text{Probability of not being a downward fluctuation: 99.96\%} \end{array}$

*S. Fukuda, et al., hep-ex/0103032

Neutrino Flavor Composition of ⁸B Flux

Flavor content analysis of ⁸B solar neutrino flux from: $\phi^{SK}_{ES} \phi^{SNO}_{CC}$

 \Rightarrow Evidence for oscillations: $\nu_{e} \rightarrow \nu_{\mu\tau}$

What About Sterile Neutrinos?

Neutrino Oscillation Scenarios

data exclude sterile neutrinos and "Just So²" parameter space
oscillations to active species

Cosmological Implications

• These results plus previous analyses suggest:

```
(\Delta m_{e\mu})^2 < 10^{-3} eV^2 \text{ or } (\Delta m_{e\tau})^2 < 10^{-3} eV^2
```

```
•Limits on v<sub>e</sub> mass give:
```

 $mv_e < 2.8 eV$

• Assuming the hypothesis of $v_{\mu} \leftrightarrow v_{\tau}$ oscillations in atmospheric neutrinos:

 $(\Delta m_{\mu\tau})^2 \approx 3 \times 10^{-3} eV^2$

 $\Rightarrow \Sigma \text{ neutrino masses:} \qquad 0.05 < \Sigma m_{e_{\mu\tau}} < 8.4 \text{ eV}$ $\Rightarrow \text{ mass fraction of neutrinos in the universe:} \qquad 0.001 < \Omega_{\nu} < 0.18$ • CC rate is low compared to the SSM prediction, and to the ES rates as measured by SNO and SK

- First direct indication of solar neutrinos of type other than v_e
- First measurement of the total flux of ⁸B neutrinos. It agrees well with SSM predictions: $\phi_{total}(^{8}B) = 5.44 \pm 0.99 \times 10^{6} \text{ cm}^{-2} \text{ s}^{-1}$
- Data exclude the "Just-So²" and sterile neutrino parameter spaces
- $m^{2}(\nu_{e} \rightarrow \nu_{\mu,\tau}) < 10^{-3} eV^{2} \Rightarrow 0.05 < \Sigma m < 8.4 eV$
- Cosmological limit on neutrino mass: $0.001 < \Omega_v < 0.18$
- Phase Iof SNO experiment complete

First Results

Measurement of charged current interactions produced by ⁸B solar neutrinos at the Sudbury Neutrino Observatory

Q.R. Ahmad¹⁵, R.C. Allen¹¹, T.C. Andersen¹², J.D. Anglin⁷, G. Bühler¹¹, J.C. Barton^{13‡}, E.W. Beier¹⁴, M. Bercovitch⁷, J. Bigu⁴, S. Biller¹³, R.A. Black¹³, I. Blevis², R.J. Boardman¹³, J. Boger¹, E. Bonvin⁹, M.G. Boulay⁹, M.G. Bowler¹³, T.J. Bowles⁶, S.J. Brice^{6,13}, M.C. Browne¹⁵, T.V. Bullard¹⁵, T.H. Burritt^{15,6}, K. Cameron¹², J. Cameron¹³, Y.D. Chan⁵, M. Chen⁹, H.H. Chen^{11*}, X. Chen^{5,13}, M.C. Chon¹², B.T. Cleveland¹³, E.T.H. Clifford^{9,3}, J.H.M. Cowan⁴, D.F. Cowen¹⁴, G.A. Cox¹⁵, Y. Dai⁹, X. Dai¹³, F. Dalnoki-Veress², W.F. Davidson⁷, P.J. Doe^{15,11,6}, G. Doucas¹³, M.R. Dragowsky^{6,5}, C.A. Duba¹⁵, F.A. Duncan⁹, J. Dunmore¹³ E.D. Earle^{9,2}, S.R. Elliott^{15,6}, H.C. Evans⁹, G.T. Ewan⁹, J. Farine², H. Fergani¹³, A.P. Ferraris¹³, R.J. Ford⁹, M.M. Fowler⁶, K. Frame¹⁸, E.D. Frank¹⁴, W. Frati¹⁴, J.V. Germani^{15,6}, S. Gil¹⁰, A. Goldschmidt⁶, D.R. Grant², R.L. Hahn¹, A.L. Hallin⁹, E.D. Hallman⁴, A. Hamer^{6,9}, A.A. Hamian¹⁵, R.U. Hag⁴, C.K. Hargrove², P.J. Harvev⁹, R. Hazama¹⁵, R. Heaton⁹, K.M. Heeger¹⁵, W.J. Heintzelman¹⁴, J. Heise¹⁰, R.L. Helmer^{10†}, J.D. Hepburn^{9,3} H. Heron¹³, J. Hewett⁴, A. Hime⁶, M. Howe¹⁵, J.G. Hykawy⁴, M.C.P. Isaac⁵, P. Jagam¹², N.A. Jelley¹³, C. Jillings⁹, G. Jonkmans⁴, J. Karn¹², P.T. Keener¹⁴, K. Kirch⁶, J.R. Klein¹⁴, A.B. Knox¹³, R.J. Komar^{10,9}, R. Kouzes⁸ T. Kutter¹⁰, C.C.M. Kyba¹⁴, J. Law¹², I.T. Lawson¹², M. Lav¹³, H.W. Lee,⁹ K.T. Lesko⁵, J.R. Leslie⁹, I. Levine², W. Locke¹³, M.M. Lowry⁸, S. Luoma⁴, J. Lyon¹³, A.B. MacDonald^{9,8}, S. Majerus¹³, H.B. Mak⁹, A.D. Marino⁵, N. McCauley¹³, D.S. McDonald¹⁴, K. McFarlane², G. McGrezor¹⁵, W. McLatchie⁹, R. Meijer Drees¹⁵, H. Mes² C. Miff auer14. http://www.sno.phy.queensu.ca F.M. N. Dkada⁵. B.W. OI oberge4. B.C. Robertson⁹, R.G.H. Robertson^{15,6}, J.K. Rowley¹, V.L. Rusu¹⁴, E. Saettler⁴, K.K. Schaffer¹⁵, A. Schuelke⁵, M.H. Schwendener⁴, H. Seifert^{4,6,15}, M. Shatkav², J.J. Simpson¹², D. Sinclair², P. Skensved⁹, A.R. Smith⁵, M.W.E. Smith¹⁵, N. Starinsky², T.D. Steiger¹⁵, R.G. Stokstad⁵, R.S. Storey⁷, B. Sur^{3,9}, R. Tafirout⁴, N. Tagg¹² N.W. Tanner¹³, R.K. Taplin¹³, M. Thorman¹³, P. Thornewell^{6,13,15} P.T. Trent^{13†}, Y.I. Tserkovnyak¹⁰, R. Van Berg¹⁴, R.G. Van de Water^{14,6}, C.J. Virtue⁴, C.E. Waltham¹⁰, J.-X. Wang¹², D.L. Wark^{13,63}, N. West¹³, J.B. Wilhelmy⁶, J.F. Wilkerson^{15,6} J. Wilson¹³, P. Wittich¹⁴, J.M. Wouters⁶, M. Yeh¹ (The SNO Collaboration) ¹ Chemistry Department, Brookhaven National Laboratory, Upton, NY 11975-5000 ²Carleton University, Ottawa, Ontario K1S 5B6 Canada ³Chalk River Laboratories, AECL Research, Chalk River, Ontario K0J 130 Canada ⁴Department of Physics and Astronomy, Laurentian University, Sudbury, Ontario PSE 2C6 Canada ⁶Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 ⁶Los Alarnos National Laboratory, Los Alarnos, NM 87545. ⁷National Research Council of Canada, Ottawa, Ontario K1A 0R6 Canada ⁸ Department of Physics, Princeton University, Princeton, NJ 08544 ⁹Department of Physics, Queen's University, Kingston, Ontario K7L 9N6 Canada ¹⁰Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 121 Canada ¹¹Department of Physics, University of California, Irvine, CA 92717 ¹³ Physics Department, University of Guelph, Guelph, Ontario N1G 2W1 Canada ¹³ Nuclear and Astrophysics Laboratory, University of Oxford, Keble Road, Oxford, OXI SRH, UK ¹⁴Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104-6596. ¹⁵Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle,

WA 98195

Additional Slides

Neutrino Event

Karsten M. Heeger

Les Houches, June 19, 2001

Oscillation Scenarios and SNO

Ratio of measured ⁸B flux relative to BP2000:

 $R^{CC}_{SNO} = 0.346 \pm 0.014 (stat.) \pm 0.020 (sys.) \pm 0.010 (theor.)$

 $R^{ES}_{SNO} = 0.529 \pm 0.073 (stat.) \pm 0.035 (sys.) \pm 0.014 (theor.)$

 \rightarrow Neutrino oscillation models with maximal mixing are not compatible

 \rightarrow Data exclude "Just So²" parameters at m²=6x10⁻¹² eV²

From Bahcall, Krastev, and Smirnov hep-ph/0103179