Texture models, neutrino

observables and Leptogenesis

Martin Hirsch

University of Southampton

- 1. Neutrino oscillation data and neutrino masses
 - 2. Texture models, U(1) family symmetries and $\mathcal{O}(1)$ coefficients
 - 3. Neutrino observables and Leptogenesis
 - 4. Summary

* M. Hirsch and S.F. King, in preparation

A) Limits (PDG2000):

$$m_{\nu_e} \leq 3 \text{ eV}$$

 $m_{\nu_{\mu}} \leq 190 \text{ keV}$
 $m_{\nu_{\tau}} \leq 18.2 \text{ MeV}$
 $\langle m_{\nu} \rangle \leq (0.2 - 0.6) \text{ eV}$

B) "Hints" on non-zero neutrino masses:

 \Rightarrow Atmospheric neutrinos:

Ratio of ν_e/ν_μ events disagrees with expectation, SuperKamiokande confirms earlier experiments with high statistics

 \Rightarrow Solar neutrinos

5 experiments (using 3 experimental techniques) observe less neutrinos than expected

 \Rightarrow neutrinos as hot dark matter (HDM)

Small $(\mathcal{O}[eV])$ neutrino mass might help structure formation

\Rightarrow LSND experiment

Neutrino masses and the

seesaw mechanism

 \Rightarrow In the SM neutrinos are massless, because $N\equiv\nu_R$ does not exist

 \Rightarrow Suppose N exists, add the following mass terms:

$$\mathcal{L} = m_D \overline{\nu}_L N + \frac{M_M NN}{M_M NN}$$

 \Rightarrow Gives the following mass matrix (one generation notation):

$$\mathcal{M}_{
u N} = \left(egin{array}{cc} 0 & m_D \ m_D & M_M \end{array}
ight).$$

 \Rightarrow Assuming $m_D \ll M_M$, one arrives at the famous seesaw formula:

$$m_{\nu} \simeq \frac{m_D^2}{M_M}$$

 \Rightarrow Smallness of observed neutrino masses explained by large mass scale M_M

 \Rightarrow However, seesaw mechanism alone does not fix relative size of different entries in the mass matrix

Frogatt-Nielson mechanism

Assume some heavy singlet θ exists. Additional exotic vector matter with mass M_V allows an expansion parameter λ to be generated by a Froggatt-Nielsen mechanism,

$$\frac{\langle \theta \rangle}{M_V} = \frac{\langle \bar{\theta} \rangle}{M_V} = \lambda \approx 0.22$$

Assign U(1) charges to L_i , N_{Ri} , etc:

The above diagram generates mass term:

$$m_{L_3,N_3} \sim \lambda^{|l_3+n_3|} \langle H \rangle$$

Even if coupling at vertex is of $\mathcal{O}(1)$, strong suppression can be generated!

U(1) Family Symmetry and Textures

Using basic idea of Frogatt-Nielsen mechanism, assign flavour charges (FC) to all fields, leading to mass matrices of the form:

$$Y_{\nu} \sim \begin{pmatrix} a_{11}\lambda^{|l_{1}+n_{1}|} & a_{12}\lambda^{|l_{1}+n_{2}|} & a_{13}\lambda^{|l_{1}+n_{3}|} \\ a_{21}\lambda^{|l_{2}+n_{1}|} & a_{22}\lambda^{|l_{2}+n_{2}|} & a_{23}\lambda^{|l_{2}+n_{3}|} \\ a_{31}\lambda^{|l_{3}+n_{1}|} & a_{32}\lambda^{|l_{3}+n_{2}|} & a_{33}\lambda^{|l_{3}+n_{3}|} \end{pmatrix}$$

$$M_{RR} \sim \begin{pmatrix} A_{11}\lambda^{|2n_{1}+\sigma|} & A_{12}\lambda^{|n_{1}+n_{2}+\sigma|} & A_{13}\lambda^{|n_{1}+n_{3}+\sigma|} \\ A_{12}\lambda^{|n_{1}+n_{2}+\sigma|} & A_{22}\lambda^{|2n_{2}+\sigma|} & A_{23}\lambda^{|n_{2}+n_{3}+\sigma|} \\ A_{13}\lambda^{|n_{1}+n_{3}\sigma|} & A_{23}\lambda^{|n_{2}+n_{3}+\sigma|} & A_{33}\lambda^{|2n_{3}+\sigma|} \end{pmatrix}$$

 \Rightarrow Since λ is $\lambda \ll 1$, a high power in the exponent leads to very small entries in the mass matrices, so-called texture zeros

Example (FC1): $l_1 = -2$, $l_2 = 0$, $l_3 = 0$, $n_1 = -2$, $n_2 = 1$, $n_3 = 0$ and $\sigma = 0$, leads to (after the seesaw):

$$m_{LL}^{FC1} \sim \begin{pmatrix} \lambda^4 & \lambda^2 & \lambda^2 \\ \lambda^2 & 1 & 1 \\ \lambda^2 & 1 & 1 \end{pmatrix} + \mathcal{O} \begin{pmatrix} \lambda^4 & \lambda^2 & \lambda^2 \\ \lambda^2 & \lambda^2 & \lambda^2 \\ \lambda^2 & \lambda^2 & \lambda^2 \end{pmatrix}$$

 \Rightarrow Advantage: Smallness of mass and relative size of entries can be easily fixed

 \Rightarrow Disdvantage: Coefficients a_{ij} and A_{ij} (assumed to be $\mathcal{O}(1)$ couplings) not predicted

$\mathcal{O}(1)$ coefficients

Basic idea:

 \Rightarrow Since $\mathcal{O}(1)$ coefficients not predicted, assume them to be a random numbers

 \Rightarrow Choose interval for coefficients such that texture structure of mass matrix is not destroyed

 \Rightarrow Run a huge sample of models in a computer program

 \Rightarrow Plot the *logarithmically binned* distributions with correct relative normalisation for each model

 \Rightarrow A model is then considered to be a "good" model, if the peaks of the distributions coincide with (or are close to) the preferred experimental value

The atmospheric angle

Figure: The atmospheric angle for 5 different models $(10^8 \text{ random sets per model})$:

a) red: FC1,

b) FC2 (dot-dashes), c) FC3 (thick dots), d) FC4 (thin dots),

e) blue: neutrino mass anarchy (No structure in neutrino mass matrix).

It is easy to generate large atmospheric angle!

The solar angle

Figure: The solar angle for 5 different models:

- a) red: FC1, b) FC2 (dot-dashes), c) FC3 (thick dots),
- d) FC4 (thin dots), e) blue: neutrino mass anarchy.

Anarchy prefers large solar angle

Flavour models can be constructed for either, large (FC1, FC3 and FC4) or small (FC2) solar angle The "Chooz angle"

Figure: $s_C = 4|U_{e3}|^2(1 - |U_{e3}|^2)$ for 5 different models: a) red: FC1, b) FC2 (dot-dashes), c) FC3 (thick dots), d) FC4 (thin dots), e) blue: neutrino mass anarchy.

Experimentally: $s_C \leq (0.1 - 0.3)$ in SK region

Anarchy prefers large s_C , peaks at $s_C = 1!$

Chooz angle important discriminator!

Ratio of Δm^2 's

Figure: $R \equiv |\Delta m_{12}^2| / |\Delta m_{23}^2|$ for 5 different models: a) red: FC1, b) FC2 (dot-dashes), c) FC3 (thick dots), d) FC4 (thin dots), e) blue: neutrino mass anarchy.

Spread in R huge! Coefficients a_{ij} and A_{ij} can not be neglected!

Small values of R disfavour neutrino mass anarchy

Variation in range of coefficients

Figure: Solar angle for 3 different ranges of coefficients for the model FC2:

- a) red: $\pm \sqrt{2\lambda}, 1/\sqrt{2\lambda}$], b) magenta: $\pm [0.82, 1.18]$,
- c) blue $\pm [0.95, 1.05]$.

Choice of coefficients very important!

 \Rightarrow Theoretical work in texture models should concentrate on calculation of coefficients!

Leptogenesis

 \Rightarrow CP violation in decay of lightest N_R comes from interference between tree-level and one-loop amplitude:

$$\epsilon = \frac{\Gamma(N_{R1} \to L_j + H_2) - \Gamma(N_{R1}^{\dagger} \to L_j^{\dagger} + H_2^{\dagger})}{\Gamma(N_{R1} \to L_j + H_2) + \Gamma(N_{R1}^{\dagger} \to L_j^{\dagger} + H_2^{\dagger})}$$

= $\frac{1}{8\pi(Y_{\nu}^{\dagger}Y_{\nu})_{11}} \sum_{i \neq 1} Im\left(\left[(Y_{\nu}^{\dagger}Y_{\nu})_{1i}\right]^2\right) \left(f(\frac{M_1^2}{M_i^2}) + g(\frac{M_1^2}{M_i^2})\right)$

where

$$f(x) = \sqrt{x} \left[1 - (1+x) \ln \left(\frac{1+x}{x} \right) \right], \quad g(x) = \frac{\sqrt{x}}{1-x}.$$

 \Rightarrow Texture models fix order of magnitude of Y_{ν}

 \Rightarrow Taking into account $\mathcal{O}(1)$ coefficients ϵ can be calculated like any low-energy observable

 \Rightarrow Conversion $\epsilon \leftrightarrow Y_B$ depends on assumed thermal history of the universe

ϵ and Y_B for FC1-FC4

Neutrino observables for variants of FC3

⇒ Variants differ only in l_i , while keeping n_i and σ constant ⇒ Keeps low-energy observables unchanged, re-scales Yukawa matrix

Models	l_1	l_2	l_3	n_1	n_2	n_3	σ	Colour:	Factor:
FC3	-1	1	1	1/2	0	-1/2	-1	red	1
FC3a	-2	2	2	1/2	0	-1/2	-1	blue	1.05
FC3b	-3	3	3	1/2	0	-1/2	-1	magenta	1.1
FC3c	-4	4	4	1/2	0	-1/2	-1	green	1.15

Leptogenesis and LA-MSW solution:

Variants of FC3

Leptogenesis independent from low energy observables!

Leptogenesis and SA-MSW solution:

Variants of FC2

Models	l_1	l_2	l_3	n_1	n_2	n_3	σ	Colour:	Factor:
FC2	-3	-1	-1	-3	0	-1	3	red	1
FC2a	-4	-2	-2	-3	0	-1	3	blue	1.1
FC2b	-4	-1	-1	-3	0	-1	3	magenta	1
FC2c	-5	-2	-2	-3	0	-1	3	green	1.1

Leptogenesis and LOW-MSW solution:

a) blue: FC5, defined as $(l_1, l_2, l_3, n_1, n_2, n_3, \sigma) = (3, -3, -3, 0, -1/2, 1, 1)$

b) for comparison red: FC2b

Summary

 $\Rightarrow \mathcal{O}(1)$ coefficients in texture models are very important: Future progress in texture models will be possible only if these coefficients can be calculated sufficiently accurate

 \Rightarrow Without specific assumptions on Yukawa matrix, Leptogenesis completely independent from low-energy observables

 \Rightarrow Leptogenesis can provide information on models otherwise unaccesible